Laplacian Preconditioning for the Inverse Arnoldi Method

Many physical processes are described by elliptic or parabolic partial differential equations. For linear stability problems associated with such equations, the inverse Laplacian provides a very effective preconditioner. In addition, it is also readily available in most scientific calculations in the form of a Poisson solver or an implicit diffusive timestep. We incorporate Laplacian preconditioning into the inverse Arnoldi method, using BiCGSTAB to solve the large linear systems. Two successful implementations are described: spherical Couette flow described by the Navier-Stokes equations and Bose-Einstein condensation described by the nonlinear Schrödinger equation. AMS subject classifications: 37M20, 65F08, 65F18, 65P10, 65P30, 76E07

[1]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[2]  Stability and decay rates of nonisotropic attractive Bose-Einstein condensates , 2002, cond-mat/0212069.

[3]  C. Wieman,et al.  Controlled collapse of a Bose-Einstein condensate. , 2001, Physical review letters.

[4]  Laurette S. Tuckerman,et al.  Numerical methods for bifurcation problems , 2004 .

[5]  Critical number of atoms for attractive Bose-Einstein condensates with cylindrically symmetrical traps , 2001, cond-mat/0104231.

[6]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[7]  Laurette S. Tuckerman,et al.  Simulation of flow between concentric rotating spheres. Part 2. Transitions , 1987, Journal of Fluid Mechanics.

[8]  L. Tuckerman,et al.  Marangoni convection in binary mixtures with Soret effect , 1998, Journal of Fluid Mechanics.

[9]  Steady-state solving via stokes preconditioning; Recursion relations for elliptic operators , 1989 .

[10]  Edgar Knobloch,et al.  Spatially localized binary-fluid convection , 2006, Journal of Fluid Mechanics.

[11]  Laurette S. Tuckerman,et al.  Simulation of flow between concentric rotating spheres. Part 1. Steady states , 1987, Journal of Fluid Mechanics.

[12]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[13]  C. Huepe,et al.  Decay Rates in Attractive Bose-Einstein Condensates , 1999 .

[14]  Albert Einstein,et al.  Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung , 2006 .

[15]  L. Tuckerman,et al.  Asymmetry and Hopf bifurcation in spherical Couette flow , 1995 .

[16]  Heyuan Wang,et al.  Numerical simulation of spherical Couette flow , 2004 .

[17]  G. Schrauf The first instability in spherical Taylor-Couette flow , 1986, Journal of Fluid Mechanics.

[18]  G. Schrauf Branching of Navier-Stokes equations in a spherical gap , 1982 .

[19]  E. Krause,et al.  Symmetric and Asymmetric Taylor Vortices in a Spherical Gap , 1985 .

[20]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[21]  Holland,et al.  Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[22]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[23]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[24]  L. Tuckerman,et al.  Stokes preconditioning for the inverse power method , 1997 .

[25]  Eusebius J. Doedel,et al.  Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems , 2012 .

[26]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[27]  L. Tuckerman,et al.  Bifurcation Analysis for Timesteppers , 2000 .

[28]  M. Wimmer Experiments on a viscous fluid flow between concentric rotating spheres , 1976, Journal of Fluid Mechanics.

[29]  Macroscopic Quantum Tunneling of a Bose-Einstein Condensate with Attractive Interaction , 1998, cond-mat/9801196.

[30]  Bose Plancks Gesetz und Lichtquantenhypothese , 1924 .

[31]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.