A metamaterial absorber for the terahertz regime: design, fabrication and characterization.

We present a metamaterial that acts as a strongly resonant absorber at terahertz frequencies. Our design consists of a bilayer unit cell which allows for maximization of the absorption through independent tuning of the electrical permittivity and magnetic permeability. An experimental absorptivity of 70% at 1.3 terahertz is demonstrated. We utilize only a single unit cell in the propagation direction, thus achieving an absorption coefficient alpha = 2000 cm(-1). These metamaterials are promising candidates as absorbing elements for thermally based THz imaging, due to their relatively low volume, low density, and narrow band response.

[1]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[2]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[3]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[4]  Willie J. Padilla,et al.  Electrically resonant terahertz metamaterials: Theoretical and experimental investigations , 2007 .

[5]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[6]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[7]  M. Wegener,et al.  Negative-index metamaterial at 780 nm wavelength. , 2006, Optics letters.

[8]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[9]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[10]  Gwyn P. Williams Filling the THz gap—high power sources and applications , 2006 .

[11]  David R. Smith,et al.  Electric-field-coupled resonators for negative permittivity metamaterials , 2006 .

[12]  G. Bastiaans,et al.  Detection and identification of explosive RDX by THz diffuse reflection spectroscopy. , 2006, Optics express.

[13]  J. Federici,et al.  THz imaging and sensing for security applications—explosives, weapons and drugs , 2005 .

[14]  Jeffrey Barber,et al.  Temperature-dependent far-infrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy. , 2005, The journal of physical chemistry. A.

[15]  N. Lobontiu Mechanics of microelectromechanical systems , 2004 .

[16]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[17]  Tatiana Globus,et al.  Terahertz sources and detectors and their application to biological sensing , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  K. Kawase,et al.  Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. , 2003, Optics express.

[19]  Dale E. Gary,et al.  Neural network analysis of terahertz spectra of explosives and bio-agents , 2003, SPIE Defense + Commercial Sensing.

[20]  David Zimdars,et al.  Fiber-pigtailed terahertz time domain spectroscopy instrumentation for package inspection and security imaging , 2003, SPIE Defense + Commercial Sensing.

[21]  Firooz A Sadjadi,et al.  Automatic detection of small objects from their infrared state-of-polarization vectors. , 2003, Optics letters.

[22]  X. C. Zhang,et al.  Terahertz wave imaging: horizons and hurdles. , 2002, Physics in medicine and biology.

[23]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[24]  Piet B. W. Schwering,et al.  Infrared polarization measurements of targets and backgrounds in a marine environment , 2001, SPIE Defense + Commercial Sensing.

[25]  Mahmoud Almasri,et al.  Self-supporting uncooled infrared microbolometers with low-thermal mass , 2001 .

[26]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[27]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[28]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[29]  V. Lysenko,et al.  Design and fabrication of metal bolometers on high porosity silicon layers , 1999 .

[30]  Euisik Yoon,et al.  A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures , 1999 .

[31]  Maya R. Gupta,et al.  Recent advances in terahertz imaging , 1999 .

[32]  T. White,et al.  An uncooled IR sensor with digital focal plane array [and medical application] , 1998, IEEE Engineering in Medicine and Biology Magazine.

[33]  Takeshi Nagashima,et al.  Terahertz Time-Domain Spectroscopy , 2005 .

[34]  J. Wauters,et al.  Doped silicon creates new bolometer material , 1997 .