Phenotype-related differential alpha-2,6- or alpha-2,3-sialylation of glycoprotein N-glycans in human chondrocytes.

[1]  J. Laine,et al.  Glycomics of bone marrow-derived mesenchymal stem cells can be used to evaluate their cellular differentiation stage , 2009, Glycoconjugate Journal.

[2]  M. Wirth,et al.  Lectin binding patterns reflect the phenotypic status of in vitro chondrocyte models , 2009, In Vitro Cellular & Developmental Biology - Animal.

[3]  M. Marini,et al.  Exposure of alpha2,6-sialylated lactosaminic chains marks apoptotic and necrotic death in different cell types. , 2008, Glycobiology.

[4]  M. Wirth,et al.  Comparison between chondroprotective effects of glucosamine, curcumin, and diacerein in IL-1beta-stimulated C-28/I2 chondrocytes. , 2008, Osteoarthritis and cartilage.

[5]  S. Nishimura,et al.  Alteration of N-glycans related to articular cartilage deterioration after anterior cruciate ligament transection in rabbits. , 2008, Osteoarthritis and cartilage.

[6]  Renate Kunert,et al.  Analysis of immunoglobulin glycosylation by LC‐ESI‐MS of glycopeptides and oligosaccharides , 2008, Proteomics.

[7]  F. dall’Olio,et al.  Surface α2-3- and α2-6-sialylation of human monocytes and derived dendritic cells and its influence on endocytosis , 2008, Glycoconjugate Journal.

[8]  I. Wilson,et al.  Adaptation of the “in‐gel release method” to N‐glycome analysis of low‐milligram amounts of material , 2007, Electrophoresis.

[9]  T. Jaatinen,et al.  N-glycan structures and associated gene expression reflect the characteristic N-glycosylation pattern of human hematopoietic stem and progenitor cells. , 2007, Experimental hematology.

[10]  J. Szechiński,et al.  Relative sialylation and fucosylation of synovial and plasma fibronectins in relation to the progression and activity of rheumatoid arthritis , 2007, Glycoconjugate Journal.

[11]  A. Minami,et al.  Sialylation of cell surface glycoconjugates is essential for osteoclastogenesis. , 2007, Bone.

[12]  J. Stadlmann,et al.  Mass + retention time = structure: a strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans. , 2007, Analytical chemistry.

[13]  Ajit Varki,et al.  Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins , 2007, Nature.

[14]  J. Samitier,et al.  Influence of surface modification on vitality and differentiation of Caco-2 cells. , 2007, Differentiation; research in biological diversity.

[15]  J. Mcclure,et al.  Lectin and other histochemical studies of the articular cartilage and the chondro-osseous junction of the normal human knee joint , 2007, Journal of Molecular Histology.

[16]  I. Brockhausen,et al.  The action of TNFα and TGFβ include specific alterations of the glycosylation of bovine and human chondrocytes , 2007 .

[17]  M. Wirth,et al.  Lectin binding studies on C-28/I2 and T/C-28a2 chondrocytes provide a basis for new tissue engineering and drug delivery perspectives in cartilage research. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[18]  Kojiro Matsumoto,et al.  NFκB-p65 Dependent Transcriptional Regulation of Glycosyltransferases in Human Colon Adenocarcinoma HT-29 by Stimulation with Tumor Necrosis Factor α , 2006 .

[19]  A. Varki Nothing in Glycobiology Makes Sense, except in the Light of Evolution , 2006, Cell.

[20]  F. dall’Olio,et al.  Phenotypic changes induced by expression of β-galactoside α2,6 sialyltransferase I in the human colon cancer cell line SW948 , 2006 .

[21]  Peng-Hui Wang,et al.  Altered mRNA expressions of sialyltransferases in ovarian cancers. , 2005, Gynecologic oncology.

[22]  J. Dudhia Aggrecan, aging and assembly in articular cartilage , 2005, Cellular and Molecular Life Sciences CMLS.

[23]  R. Zimmer,et al.  Comparison of the chondrosarcoma cell line SW1353 with primary human adult articular chondrocytes with regard to their gene expression profile and reactivity to IL-1beta. , 2005, Osteoarthritis and cartilage.

[24]  J. Wakefield,et al.  Hypersialylation of beta1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. , 2005, Cancer research.

[25]  I. Brockhausen,et al.  The effect of TNF-α on glycosylation pathways in bovine synoviocytes , 2004 .

[26]  P. Pastoureau,et al.  Cartilage and Osteoarthritis , 2004 .

[27]  S. Bellis,et al.  Variant glycosylation: an underappreciated regulatory mechanism for beta1 integrins. , 2004, Biochimica et biophysica acta.

[28]  Alan J Wright,et al.  Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44. , 2004, Molecular cell.

[29]  A. Amoresano,et al.  Glycosylation profile of integrin α3β1 changes with melanoma progression , 2003 .

[30]  A. Zien,et al.  Molecular phenotyping of human chondrocyte cell lines T/C-28a2, T/C-28a4, and C-28/I2. , 2003, Arthritis and rheumatism.

[31]  S. Bellis,et al.  Ras oncogene directs expression of a differentially sialylated, functionally altered β1 integrin , 2003, Oncogene.

[32]  A. Mobasheri,et al.  Apoptosis and the loss of chondrocyte survival signals contribute to articular cartilage degradation in osteoarthritis. , 2003, Veterinary journal.

[33]  D. Papy-Garcia,et al.  Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. , 2003, Glycobiology.

[34]  J. Peters,et al.  Is osteoarthritis a 'fibronectin-integrin imbalance disorder'? , 2002, Osteoarthritis and cartilage.

[35]  A. Csoka,et al.  Hyaluronidases and CD44 undergo differential modulation during chondrogenesis. , 2002, Biochemical and biophysical research communications.

[36]  J. Lafitte,et al.  Tumor Necrosis Factor α Increases the Expression of Glycosyltransferases and Sulfotransferases Responsible for the Biosynthesis of Sialylated and/or Sulfated Lewis x Epitopes in the Human Bronchial Mucosa* , 2002, The Journal of Biological Chemistry.

[37]  F. dall’Olio,et al.  Sialyltransferases in cancer , 2001, Glycoconjugate Journal.

[38]  E. Puré,et al.  A crucial role for CD44 in inflammation. , 2001, Trends in molecular medicine.

[39]  W. Knudson,et al.  Cartilage proteoglycans. , 2001, Seminars in cell & developmental biology.

[40]  R. Sanderson,et al.  Heparan sulfate proteoglycans in invasion and metastasis. , 2001, Seminars in cell & developmental biology.

[41]  I. Martin,et al.  Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. , 2001, Osteoarthritis and cartilage.

[42]  M. Goldring,et al.  The role of the chondrocyte in osteoarthritis. , 2000, Arthritis and rheumatism.

[43]  W. Eger,et al.  Hyaluronan oligosaccharides perturb cartilage matrix homeostasis and induce chondrocytic chondrolysis. , 2000, Arthritis and rheumatism.

[44]  R. Loeser,et al.  Integrin expression by primary and immortalized human chondrocytes: evidence of a differential role for α1β1 and α2β1 integrins in mediating chondrocyte adhesion to types II and VI collagen , 2000 .

[45]  R. Dwek,et al.  Sugar printing rheumatic diseases: a potential method for disease differentiation using immunoglobulin G oligosaccharides. , 1999, Arthritis and rheumatism.

[46]  M. Lotz,et al.  The role of nitric oxide in articular cartilage damage. , 1999, Rheumatic diseases clinics of North America.

[47]  A. Wagers,et al.  Interleukin 12 and Interleukin 4 Control T Cell Adhesion to Endothelial Selectins through Opposite Effects on α1,3-fucosyltransferase VII Gene Expression , 1998, The Journal of experimental medicine.

[48]  I. Brockhausen,et al.  Glycoproteins and Their Relationship to Human Disease , 1998, Cells Tissues Organs.

[49]  R. Hyman,et al.  Site-specific de-N-glycosylation of CD44 can activate hyaluronan binding, and CD44 activation states show distinct threshold densities for hyaluronan binding. , 1998, Cancer research.

[50]  N. Packer,et al.  A general approach to desalting oligosaccharides released from glycoproteins , 1998, Glycoconjugate Journal.

[51]  K. Sandhoff,et al.  The generation and characterization of a rat neural cell line overexpressing the α2,6(N) sialyltransferase , 1998, Glycoconjugate Journal.

[52]  I. Stamenkovic,et al.  Glycosylation Provides Both Stimulatory and Inhibitory Effects on Cell Surface and Soluble CD44 Binding to Hyaluronan , 1998, The Journal of cell biology.

[53]  A. Perschl,et al.  Variant cell lines selected for alterations in the function of the hyaluronan receptor CD44 show differences in glycosylation , 1995, The Journal of experimental medicine.

[54]  K. Oritani,et al.  Glycosylation of CD44 negatively regulates its recognition of hyaluronan , 1995, The Journal of experimental medicine.

[55]  I. Stamenkovic,et al.  Cytokine-induced beta-galactoside alpha-2,6-sialyltransferase in human endothelial cells mediates alpha 2,6-sialylation of adhesion molecules and CD22 ligands. , 1994, The Journal of biological chemistry.

[56]  T. Anastassiades,et al.  Differential effects of bone associated factors on newly synthesized anionic glycoconjugates by articular chondrocyte cultures from adult and immature bovines. , 1993, The Journal of rheumatology.

[57]  A. Varki,et al.  Biological roles of oligosaccharides: all of the theories are correct , 1993, Glycobiology.

[58]  V. Lefebvre,et al.  Modulation by interleukin 1 and tumor necrosis factor alpha of production of collagenase, tissue inhibitor of metalloproteinases and collagen types in differentiated and dedifferentiated articular chondrocytes. , 1990, Biochimica et biophysica acta.

[59]  F. De Ceuninck,et al.  Culture of chondrocytes in alginate beads. , 2004, Methods in molecular medicine.

[60]  E. Hedbom,et al.  Molecular aspects of pathogenesis in osteoarthritis: the role of inflammation , 2002, Cellular and Molecular Life Sciences CMLS.