Distribution of calcium-binding proteins parvalbumin and calbindin in the thalamic auditory center in pigeons

[1]  N. Kenigfest,et al.  Distribution of calcium-binding proteins parvalbumin and calbindin in the pigeon telencephalic auditory center , 2017, Journal of Evolutionary Biochemistry and Physiology.

[2]  N. Vesselkin,et al.  Distribution of calcium-binding proteins in the pigeon visual thalamic centers and related pretectal and mesencephalic nuclei. Phylogenetic and functional determinants , 2016, Brain Research.

[3]  H. Tostivint,et al.  Differences in parvalbumin and calbindin chemospecificity in the centers of the turtle ascending auditory pathway revealed by double immunofluorescence labeling , 2012, Brain Research.

[4]  C. Carr,et al.  Calcium‐binding protein immunoreactivity characterizes the auditory system of Gekko gecko , 2010, The Journal of comparative neurology.

[5]  N. Vesselkin,et al.  Core-and-belt organisation of the mesencephalic and forebrain auditory centres in turtles: Expression of calcium-binding proteins and metabolic activity , 2010, Brain Research.

[6]  N. Kenigfest,et al.  Metabolic activity of pigeon thalamic and telencephalic auditory centers , 2009, Journal of Evolutionary Biochemistry and Physiology.

[7]  N. Kenigfest,et al.  Distribution of metabolic activity (cytochrome oxidase) and immunoreactivity to calcium-binding proteins in the turtle brainstem auditory nuclei , 2008, Journal of Evolutionary Biochemistry and Physiology.

[8]  Xinwen Zhang,et al.  Comparative analysis of neurogenesis between the core and shell regions of auditory areas in the chick (Gallus gallus domesticus) , 2008, Brain Research.

[9]  C. Mello,et al.  The excitatory thalamo‐“cortical” projection within the song control system of zebra finches is formed by calbindin‐expressing neurons , 2007, The Journal of comparative neurology.

[10]  S. Brauth,et al.  Contact-call driven and tone-driven zenk expression in the nucleus ovoidalis of the budgerigar (Melopsittacus undulatus) , 2006, Neuroreport.

[11]  W. Peng,et al.  Immunohistochemistry and neural connectivity of the Ov shell in the songbird and their evolutionary implications , 2004, The Journal of comparative neurology.

[12]  J. Rio,et al.  Calcium-Binding Proteins in the Turtle Thalamus. Analysis in the Light of Hypothesis of the “Core-Matrix” Thalamic Organization in Relation to the Problem of Homology of Thalamic Nuclei among Amniotes , 2003, Journal of Evolutionary Biochemistry and Physiology.

[13]  H. Scheich,et al.  Distribution of parvalbumin, cytochrome oxidase activity and 14C-2-deoxyglucose uptake in the brain of the zebra finch , 1985, Cell and Tissue Research.

[14]  John H. Casseday,et al.  The Evolution of Central Pathways and Their Neural Processing Patterns , 2004 .

[15]  D. Davies,et al.  Distribution of CGRP‐like immunoreactivity in the chick and quail brain , 2000, The Journal of comparative neurology.

[16]  E. G. Jones,et al.  Viewpoint: the core and matrix of thalamic organization , 1998, Neuroscience.

[17]  A. Reiner,et al.  The efferent projections of the dorsal and ventral pallidal parts of the pigeon basal ganglia, studied with biotinylated dextran amine , 1997, Neuroscience.

[18]  M. Konishi,et al.  Representation of sound localization cues in the auditory thalamus of the barn owl. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[19]  M. Cheng,et al.  Reciprocal talk between the auditory thalamus and the hypothalamus: an antidromic study , 1997, Neuroreport.

[20]  G. E. Vates,et al.  Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches (Taenopygia guttata) , 1996, The Journal of comparative neurology.

[21]  M. Zuo,et al.  Proposed pathways for vocal self‐stimulation: Met‐enkephalinergic projections linking the mibrain vocal nucleus, auditory‐responsive thalamic vocal nucleus, auditory‐responsive thalamic regions and neurosecretory hypothalamus , 1994 .

[22]  M. Vater,et al.  Parvalbumin, calbindin D‐28k, and calretinin immunoreactivity in the ascending auditory pathway of horseshoe bats , 1994, The Journal of comparative neurology.

[23]  H. Karten,et al.  Connections of the auditory forebrain in the pigeon (columba livia) , 1993, The Journal of comparative neurology.

[24]  J. Tepper,et al.  The shell region of the nucleus ovoidalis: A subdivision of the avian auditory thalamus , 1992, The Journal of comparative neurology.

[25]  H. Scheich,et al.  Parvalbumin and calbindin-D28K immunoreactivity as developmental markers of auditory and vocal motor nuclei of the zebra finch , 1991, Neuroscience.

[26]  M. Celio,et al.  Calbindin D-28k and parvalbumin in the rat nervous system , 1990, Neuroscience.

[27]  S. Brauth Investigation of central auditory nuclei in the budgerigar with cytochrome oxidase histochemistry , 1990, Brain Research.

[28]  L. Bolis,et al.  Calcium and Calcium Binding Proteins: Molecular and Functional Aspects , 1988 .

[29]  R. Dooling,et al.  Auditory Pathways in the Budgerigar (Part 1 of 2) , 1987 .

[30]  S. Brauth,et al.  Auditory Pathways in the Budgerigar , 1987 .

[31]  R. Dooling,et al.  Auditory pathways in the budgerigar. I. Thalamo-telencephalic projections. , 1987, Brain, behavior and evolution.

[32]  L. Anghileri,et al.  The role of calcium in biological systems , 1982 .

[33]  L. Garcia-Segura,et al.  Specific neurons in chick central nervous system stain with an antibody against chick intestinal vitamin D-dependent calcium-binding protein , 1981, Brain Research.

[34]  C. McAuliffe Calcium-Binding Proteins , 1975 .

[35]  H. Karten,et al.  The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami. , 1968, Brain research.