IMEX and exact sequence discretization of the multi-fluid plasma model

Abstract Multi-fluid plasma models, where an electron fluid is modeled in addition to multiple ion and neutral species as well as the full set of Maxwell's equations, are useful for representing physics beyond the scope of classic MHD. This advantage presents challenges in appropriately dealing with electron dynamics and electromagnetic behavior characterized by the plasma and cyclotron frequencies and the speed of light. For physical systems, such as those near the MHD asymptotic regime, this requirement drastically increases runtimes for explicit time integration even though resolving fast dynamics may not be critical for accuracy. Implicit time integration methods, with efficient solvers, can help to step over fast time-scales that constrain stability, but do not strongly influence accuracy. As an extension, Implicit-explicit (IMEX) schemes provide an additional mechanism to choose which dynamics are evolved using an expensive implicit solve or resolved using a fast explicit solve. In this study, in addition to IMEX methods we also consider a physics compatible exact sequence spatial discretization. This combines nodal bases (H-Grad) for fluid dynamics with a set of vector bases (H-Curl and H-Div) for Maxwell's equations. This discretization allows for multi-fluid plasma modeling without violating Gauss' laws for the electric and magnetic fields. This initial study presents a discussion of the major elements of this formulation and focuses on demonstrating accuracy in the linear wave regime and in the MHD limit for both a visco-resistive and a dispersive ideal MHD problem.

[1]  G. Russo,et al.  Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations , 2000 .

[2]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[3]  A. C. Robinson,et al.  Matching algorithms with physics : exact sequences of finite element spaces , 2004 .

[4]  M. Avila,et al.  Magnetohydrodynamics , 2017 .

[5]  Dinshaw Balsara,et al.  Second-Order-accurate Schemes for Magnetohydrodynamics with Divergence-free Reconstruction , 2003, astro-ph/0308249.

[6]  Homer F. Walker,et al.  Globalization Techniques for Newton-Krylov Methods and Applications to the Fully Coupled Solution of the Navier-Stokes Equations , 2006, SIAM Rev..

[7]  Pavel B. Bochev,et al.  An Algebraic Multigrid Approach Based on a Compatible Gauge Reformulation of Maxwell's Equations , 2008, SIAM J. Sci. Comput..

[8]  John N. Shadid,et al.  A Block Preconditioner for an Exact Penalty Formulation for Stationary MHD , 2014, SIAM J. Sci. Comput..

[9]  John N. Shadid,et al.  A New Approximate Block Factorization Preconditioner for Two-Dimensional Incompressible (Reduced) Resistive MHD , 2013, SIAM J. Sci. Comput..

[10]  John N. Shadid,et al.  Scalable implicit incompressible resistive MHD with stabilized FE and fully-coupled Newton–Krylov-AMG , 2016 .

[11]  F. Hinton Collisional transport in plasma , 1983 .

[12]  Uri Shumlak,et al.  A blended continuous-discontinuous finite element method for solving the multi-fluid plasma model , 2016, J. Comput. Phys..

[13]  John N. Shadid,et al.  Scalable Preconditioners for Structure Preserving Discretizations of Maxwell Equations in First Order Form , 2018, SIAM J. Sci. Comput..

[14]  Uri Shumlak,et al.  A Discontinuous Galerkin Method for Ideal Two-Fluid Plasma Equations , 2010, 1003.4542.

[15]  Uri Shumlak,et al.  Advanced physics calculations using a multi-fluid plasma model , 2011, Comput. Phys. Commun..

[16]  Jinchao Xu,et al.  Stable finite element methods preserving $$\nabla \cdot \varvec{B}=0$$∇·B=0 exactly for MHD models , 2017, Numerische Mathematik.

[17]  J. Bittencourt Fundamentals of plasma physics , 1986 .

[18]  Lorenzo Pareschi,et al.  Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit , 2013, SIAM J. Sci. Comput..

[19]  Sean T. Miller,et al.  Modeling collisional processes in plasmas using discontinuous numerical methods , 2016 .

[20]  Pavel B. Bochev,et al.  Solving PDEs with Intrepid , 2012, Sci. Program..

[21]  Allen C. Robinson,et al.  Toward an h-Independent Algebraic Multigrid Method for Maxwell's Equations , 2006, SIAM J. Sci. Comput..

[22]  Uri Shumlak,et al.  Analytical and computational study of the ideal full two-fluid plasma model and asymptotic approximations for Hall-magnetohydrodynamics , 2011 .

[23]  P. Pritchett,et al.  Geospace Environment Modeling magnetic reconnection challenge: Simulations with a full particle electromagnetic code , 2001 .

[24]  Willem Hundsdorfer,et al.  IMEX extensions of linear multistep methods with general monotonicity and boundedness properties , 2007, J. Comput. Phys..

[25]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[26]  Paolo Ricci,et al.  GEM reconnection challenge: Implicit kinetic simulations with the physical mass ratio , 2002 .

[27]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[28]  Pavel B. Bochev,et al.  Principles of Mimetic Discretizations of Differential Operators , 2006 .

[29]  Gabriella Puppo,et al.  Implicit–Explicit Schemes for BGK Kinetic Equations , 2007, J. Sci. Comput..

[30]  Paul T. Lin,et al.  Performance of fully-coupled algebraic multigrid preconditioners for large-scale VMS resistive MHD , 2017, J. Comput. Appl. Math..

[31]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[32]  William Daughton,et al.  Two-dimensional fully kinetic simulations of driven magnetic reconnection with boundary conditions relevant to the Magnetic Reconnection Experiment , 2008 .

[33]  Scott P. MacLachlan,et al.  Monolithic Multigrid Methods for Two-Dimensional Resistive Magnetohydrodynamics , 2016, SIAM J. Sci. Comput..

[34]  Francesca Rapetti,et al.  Whitney Forms of Higher Degree , 2009, SIAM J. Numer. Anal..

[35]  William B. Thompson Transport Processes in the Plasma , 1960 .

[36]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[37]  A. Bossavit A rationale for 'edge-elements' in 3-D fields computations , 1988 .

[38]  N. Reddell,et al.  A Kinetic Vlasov Model for Plasma Simulation Using Discontinuous Galerkin Method on Many-Core Architectures , 2016 .

[39]  John N. Shadid,et al.  Enabling Scalable Multifluid Plasma Simulations Through Block Preconditioning , 2020 .

[40]  Michael Hesse,et al.  Geospace Environmental Modeling (GEM) magnetic reconnection challenge , 2001 .

[41]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[42]  William Daughton,et al.  Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions , 2006 .

[43]  Yousef Saad,et al.  Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..

[44]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[45]  Ludmil T. Zikatanov,et al.  Robust Solvers for Maxwell's Equations with Dissipative Boundary Conditions , 2017, SIAM J. Sci. Comput..

[46]  Uri Shumlak,et al.  A general nonlinear fluid model for reacting plasma-neutral mixtures , 2012 .

[47]  Claus-Dieter Munz,et al.  Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model , 2000 .

[48]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[49]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .