Dry granular flow interaction with dual-barrier systems

Multiple barriers are commonly installed along predicted geophysical flow paths to intercept large flow volumes. The main criterion for multiple-barrier design is volume retained. The velocity of t...

[1]  Giovanni B. Crosta,et al.  Numerical Modeling of Large Landslide Stability and Runout , 2003 .

[2]  T. Faug Depth-averaged analytic solutions for free-surface granular flows impacting rigid walls down inclines. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Gholamreza Mesri,et al.  The coefficient of earth pressure at rest , 1993 .

[4]  R. Iverson Scaling and design of landslide and debris-flow experiments , 2015 .

[5]  G. Midi,et al.  On dense granular flows , 2003, The European physical journal. E, Soft matter.

[6]  Michael Dumbser,et al.  Submerged granular channel flows driven by gravity , 2014 .

[7]  O. Hungr,et al.  Analysis of run-up of granular avalanches against steep, adverse slopes and protective barriers , 2010 .

[8]  A. Armanini,et al.  Dynamic impact of a debris flow front against a vertical wall , 2011 .

[9]  Peter Gauer,et al.  The design of avalanche protection dams : recent practical and theoretical developments , 2009 .

[10]  Peter Gauer,et al.  Overrun length of avalanches overtopping catching dams: Cross‐comparison of small‐scale laboratory experiments and observations from full‐scale avalanches , 2008 .

[11]  Mohamed Naaim,et al.  The full-scale avalanche test site, Lautaret, France. , 2013 .

[12]  C. Ng,et al.  Physical modeling of baffles influence on landslide debris mobility , 2015, Landslides.

[13]  W. A. Take,et al.  Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry , 2003 .

[14]  D. C. Drucker,et al.  Soil mechanics and plastic analysis or limit design , 1952 .

[15]  T. Faug Macroscopic force experienced by extended objects in granular flows over a very broad Froude-number range , 2015, The European physical journal. E, Soft matter.

[16]  Y. Forterre,et al.  Flows of Dense Granular Media , 2008 .

[17]  N. Wright,et al.  Experimental Study on the Mobility of Channelized Granular Mass Flow , 2016 .

[18]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[19]  T. Faug,et al.  Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  A. Armanini Closure relations for mobile bed debris flows in a wide range of slopes and concentrations , 2015 .

[21]  W. A. Take,et al.  Physical and numerical modelling of dry granular flows under Coriolis conditions , 2015 .

[22]  Olivier Pouliquen,et al.  SCALING LAWS IN GRANULAR FLOWS DOWN ROUGH INCLINED PLANES , 1999 .

[23]  T. Faug,et al.  Experimental investigation on steady granular flows interacting with an obstacle down an inclined channel: study of the dead zone upstream from the obstacle. Application to interaction between dense snow avalanches and defence structures , 2002 .

[24]  O. Hungr,et al.  Estimating total resisting force in flexible barrier impacted by a granular avalanche using physical and numerical modeling , 2016 .

[25]  R. Iverson,et al.  U. S. Geological Survey , 1967, Radiocarbon.

[26]  T. Faug,et al.  Equation for the force experienced by a wall overflowed by a granular avalanche: experimental verification. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  T. Faug,et al.  A scaling law for impact force of a granular avalanche flowing past a wall , 2012 .

[29]  Kolumban Hutter,et al.  Avalanche dynamics: Dynamics of rapid flows of dense granular avalanches , 2016 .

[30]  Sebastian Noelle,et al.  Shock waves, dead zones and particle-free regions in rapid granular free-surface flows , 2003, Journal of Fluid Mechanics.

[31]  T. Faug,et al.  Dense and powder avalanches: momentumreduction generated by a dam , 2004, Annals of Glaciology.

[32]  Mohamed Naaim,et al.  Time-varying force from dense granular avalanches on a wall. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  M. Souli ALE and Fluid-Structure Interaction Capabilities in LS-DYNA , 2002 .

[34]  N R Morgenstern,et al.  Experiments on the flow behaviour of granular materials at high velocity in an open channel , 1984 .

[35]  Tómas Jóhannesson,et al.  A laboratory study of the retarding effects of braking mounds on snow avalanches , 2003 .

[36]  R. Michalowski Coefficient of Earth Pressure at Rest , 2005, Geotechnical Correlations for Soils and Rocks.

[37]  C. Ng,et al.  Flume investigation of landslide granular debris and water runup mechanisms , 2015 .

[38]  O. Korup,et al.  SPECIFIC TARGETED RESEARCH PROJECT INTEGRAL RISK MANAGEMENT OF EXTREMELY RAPID MASS MOVEMENTS , 2008 .

[39]  T. Faug,et al.  An equation for spreading length, center of mass and maximum run-out shortenings of dense avalanche flows by vertical obstacles , 2004 .

[40]  SongD. Flume investigation of landslide debris–resisting baffles , 2014 .

[41]  T. Faug,et al.  Varying Dam Height to Shorten the Run-Out of Dense Avalanche Flows: Developing a Scaling Law from Laboratory Experiments , 2003 .

[42]  Nicolas Eckert,et al.  Return period calculation and passive structure design at the Taconnaz avalanche path, France , 2010, Annals of Glaciology.

[43]  Charles Wang Wai Ng,et al.  Computational investigation of baffle configuration on impedance of channelized debris flow , 2015 .

[44]  G. L. Wang Lessons learned from protective measures associated with the 2010 Zhouqu debris flow disaster in China , 2013, Natural Hazards.

[45]  Peng Cui,et al.  Experimental analysis on the impact force of viscous debris flow , 2015 .

[46]  Olivier Pouliquen,et al.  A constitutive law for dense granular flows , 2006, Nature.

[47]  T. Faug,et al.  Standing jumps in shallow granular flows down smooth inclines , 2015 .

[48]  C. Ng,et al.  Landslide mobility analysis for design of multiple debris-resisting barriers , 2015 .

[49]  Peter Gauer,et al.  On pulsed Doppler radar measurements of avalanches and their implication to avalanche dynamics , 2007 .

[50]  Andrew W. Woods,et al.  Flying avalanches , 2003 .

[51]  Charles Wang Wai Ng,et al.  Velocity attenuation of debris flows and a new momentum-based load model for rigid barriers , 2017, Landslides.

[52]  T. Faug,et al.  Gravitational wet avalanche pressure on pylon-like structures , 2016 .

[53]  Peter Gauer,et al.  On full-scale avalanche measurements at the Ryggfonn test site, Norway , 2007 .

[54]  Dirk Proske,et al.  Debris flow impact estimation for breakers , 2011 .