Chapter Four - Preference Incorporation in Evolutionary Multiobjective Optimization: A Survey of the State-of-the-Art

Abstract After using Evolutionary Algorithms (EAs) for solving multiobjective optimization problems for more than two decades, the incorporation of the decision maker's (DM’s) preferences within the evolutionary process has finally become an active research area. In fact, EAs have demonstrated their effectiveness and efficiency in providing a well-converged and well-distributed approximation of the Pareto front. However, in reality, the DM is not interested in discovering the whole Pareto front rather than approximating the portion of the front that best matches his/her preferences, i.e., the Region Of Interest. For this reason, many new preference-based Multiobjective Optimization EAs (MOEAs), which are mostly variations of existing methods, have been recently published in the specialized literature. The purpose of this chapter is to summarize and organize the information on these current approaches in an attempt to motivate researchers to further focus on hybridizing between decision making and evolutionary multiobjective optimization research fields; consequently facilitating the DM's task when selecting the final alternative to realize. Hence, a summary of the main preference-based MOEAs is provided together with a brief criticism that includes their pros and cons. Furthermore, we propose a classification of such type of algorithms based on the DM's preference information structure. Finally, the future trends in this research area and some possible paths for future research are outlined.

[1]  José Rui Figueira,et al.  Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method , 2009, Eur. J. Oper. Res..

[2]  Eduardo Fernández,et al.  Deriving a final ranking from fuzzy preferences: An approach compatible with the Principle of Correspondence , 2008, Math. Comput. Model..

[3]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[4]  Xiaodong Li,et al.  Better Spread and Convergence: Particle Swarm Multiobjective Optimization Using the Maximin Fitness Function , 2004, GECCO.

[5]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[6]  Pekka Korhonen,et al.  A Visual Interactive Method for Solving the Multiple-Criteria Problem , 1986 .

[7]  Sufian Sudenga,et al.  Incorporating decision maker preference in multiobjective evolutionary algorithm , 2014, 2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES).

[8]  E. F. Khor,et al.  An Evolutionary Algorithm with Advanced Goal and Priority Specification for Multi-objective Optimization , 2011, J. Artif. Intell. Res..

[9]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[10]  Mark Fleischer,et al.  The measure of pareto optima: Applications to multi-objective metaheuristics , 2003 .

[11]  Jürgen Branke,et al.  Consideration of Partial User Preferences in Evolutionary Multiobjective Optimization , 2008, Multiobjective Optimization.

[12]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[13]  E. F. Khor,et al.  Evolutionary algorithms with goal and priority information for multi-objective optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[14]  S. French Decision Theory: An Introduction to the Mathematics of Rationality , 1986 .

[15]  Khaled Ghédira,et al.  Estimating nadir point in multi-objective optimization using mobile reference points , 2010, IEEE Congress on Evolutionary Computation.

[16]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[17]  Murat Köksalan,et al.  A Territory Defining Multiobjective Evolutionary Algorithms and Preference Incorporation , 2010, IEEE Transactions on Evolutionary Computation.

[18]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[19]  Lily Rachmawati,et al.  Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[20]  Ricardo H. C. Takahashi,et al.  Decision-Maker Preference Modeling in Interactive Multiobjective Optimization , 2013, EMO.

[21]  Franz Rothlauf,et al.  Reference point based multi-objective evolutionary algorithms for group decisions , 2008, GECCO '08.

[22]  Eduardo Fernández,et al.  Increasing selective pressure towards the best compromise in evolutionary multiobjective optimization: The extended NOSGA method , 2011, Inf. Sci..

[23]  Salvatore Greco,et al.  Robust Ordinal Regression , 2014, Trends in Multiple Criteria Decision Analysis.

[24]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[25]  Xiaodong Li,et al.  Integrating user preferences with particle swarms for multi-objective optimization , 2008, GECCO '08.

[26]  Carlos A. Coello Coello,et al.  Online Objective Reduction to Deal with Many-Objective Problems , 2009, EMO.

[27]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[28]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[29]  Kalyanmoy Deb,et al.  Light beam search based multi-objective optimization using evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[30]  Andrzej P. Wierzbicki,et al.  Reference Point Approaches and Objective Ranking , 2006, Practical Approaches to Multi-Objective Optimization.

[31]  Khaled Ghédira,et al.  The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making , 2010, IEEE Transactions on Evolutionary Computation.

[32]  Lily Rachmawati,et al.  Multiobjective Evolutionary Algorithm With Controllable Focus on the Knees of the Pareto Front , 2009, IEEE Transactions on Evolutionary Computation.

[33]  Xiaodong Li,et al.  Reference Point-Based Particle Swarm Optimization Using a Steady-State Approach , 2008, SEAL.

[34]  K. Arrow Social Choice and Individual Values , 1951 .

[35]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[36]  Kalyanmoy Deb,et al.  Interactive evolutionary multi-objective optimization and decision-making using reference direction method , 2007, GECCO '07.

[37]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[38]  Andrzej Jaszkiewicz,et al.  The 'Light Beam Search' approach - an overview of methodology and applications , 1999, Eur. J. Oper. Res..

[39]  Jyrki Wallenius,et al.  Interactive evolutionary multi-objective optimization for quasi-concave preference functions , 2010, Eur. J. Oper. Res..

[40]  Luis C. Dias,et al.  Valued outranking relations in ELECTRE providing manageable disaggregation procedures , 2004, Eur. J. Oper. Res..

[41]  Khaled Ghédira,et al.  Searching for knee regions of the Pareto front using mobile reference points , 2011, Soft Comput..

[42]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[43]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[44]  Heike Trautmann,et al.  Integration of Preferences in Hypervolume-Based Multiobjective Evolutionary Algorithms by Means of Desirability Functions , 2010, IEEE Transactions on Evolutionary Computation.

[45]  Anne Auger,et al.  Articulating user preferences in many-objective problems by sampling the weighted hypervolume , 2009, GECCO.

[46]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO '06.

[47]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[48]  B. Roy THE OUTRANKING APPROACH AND THE FOUNDATIONS OF ELECTRE METHODS , 1991 .

[49]  Kalyanmoy Deb,et al.  Introducing Robustness in Multi-Objective Optimization , 2006, Evolutionary Computation.

[50]  Carlos A. Coello Coello,et al.  Evolutionary multiobjective optimization using an outranking-based dominance generalization , 2010, Comput. Oper. Res..

[51]  S. Zionts,et al.  Theory of convex cones in multicriteria decision making , 1988 .

[52]  Mauro Brunato,et al.  Reactive Search and Intelligent Optimization , 2008 .

[53]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[54]  Yoram Singer,et al.  Learning to Order Things , 1997, NIPS.

[55]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[56]  Indraneel Das On characterizing the “knee” of the Pareto curve based on Normal-Boundary Intersection , 1999 .

[57]  Khaled Ghédira,et al.  Searching for knee regions in multi-objective optimization using mobile reference points , 2010, SAC '10.

[58]  Carlos A. Coello Coello,et al.  Preference incorporation to solve many-objective airfoil design problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[59]  Lamjed Ben Said,et al.  Group Preference-based Evolutionary Multi-objective Optimization with Non-Equally Important Decision Makers: Application to the Portfolio Selection Problem , 2013 .

[60]  Khaled Ghédira,et al.  Negotiating decision makers' reference points for group preference-based Evolutionary Multi-objective Optimization , 2011, 2011 11th International Conference on Hybrid Intelligent Systems (HIS).

[61]  Tobias Wagner,et al.  Model-based optimization revisited: Towards real-world processes , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[62]  S French,et al.  Multicriteria Methodology for Decision Aiding , 1996 .

[63]  Xiaodong Li,et al.  A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization , 2003, GECCO.

[64]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[65]  Ian Griffin,et al.  A Comparative Study of Progressive Preference Articulation Techniques for Multiobjective Optimisation , 2007, EMO.

[66]  Murat Köksalan,et al.  An Interactive Territory Defining Evolutionary Algorithm: iTDEA , 2010, IEEE Transactions on Evolutionary Computation.

[67]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[68]  Lily Rachmawati,et al.  Incorporating the Notion of Relative Importance of Objectives in Evolutionary Multiobjective Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[69]  K. Deb,et al.  Understanding knee points in bicriteria problems and their implications as preferred solution principles , 2011 .

[70]  Milosz Kadzinski,et al.  Robust ordinal regression for multiple criteria group decision: UTAGMS-GROUP and UTADISGMS-GROUP , 2012, Decis. Support Syst..

[71]  Garrison W. Greenwood,et al.  Fitness Functions for Multiple Objective Optimization Problems: Combining Preferences with Pareto Rankings , 1996, FOGA.

[72]  Carlos A. Coello Coello,et al.  An updated survey of GA-based multiobjective optimization techniques , 2000, CSUR.

[73]  Kaisa Miettinen,et al.  Visualizing the Pareto Frontier , 2008, Multiobjective Optimization.

[74]  Carlos M. Fonseca,et al.  Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function , 2001, EMO.

[75]  Kalyanmoy Deb,et al.  Finding Knees in Multi-objective Optimization , 2004, PPSN.

[76]  H. Trautmann,et al.  Preference-based Pareto optimization in certain and noisy environments , 2009 .

[77]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[78]  J. Branke,et al.  Interactive evolutionary multiobjective optimization driven by robust ordinal regression , 2010 .

[79]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[80]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[81]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions , 2010, IEEE Transactions on Evolutionary Computation.

[82]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[83]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[84]  Luis C. Dias,et al.  Inferring Electre's veto-related parameters from outranking examples , 2006, Eur. J. Oper. Res..

[85]  Bernhard Sendhoff,et al.  Incorporation Of Fuzzy Preferences Into Evolutionary Multiobjective Optimization , 2002, GECCO.

[86]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[87]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[88]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[89]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[90]  Bernhard Sendhoff,et al.  Adapting Weighted Aggregation for Multiobjective Evolution Strategies , 2001, EMO.

[91]  Jyrki Wallenius,et al.  Visualization in the Multiple Objective Decision-Making Framework , 2008, Multiobjective Optimization.

[92]  Evan J. Hughes,et al.  Evolutionary many-objective optimisation: many once or one many? , 2005, 2005 IEEE Congress on Evolutionary Computation.

[93]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[94]  Roberto Battiti,et al.  Brain-Computer Evolutionary Multiobjective Optimization: A Genetic Algorithm Adapting to the Decision Maker , 2010, IEEE Trans. Evol. Comput..