Robust sparse estimation of multiresponse regression and inverse covariance matrix via the L2 distance
暂无分享,去创建一个
[1] M. C. Jones,et al. Robust and efficient estimation by minimising a density power divergence , 1998 .
[2] Mathias Drton,et al. Robust graphical modeling of gene networks using classical and alternative t-distributions , 2010, 1009.3669.
[3] Alexandre d'Aspremont,et al. Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .
[4] Jianhua Z. Huang,et al. Covariance matrix selection and estimation via penalised normal likelihood , 2006 .
[5] D. Donoho,et al. The "Automatic" Robustness of Minimum Distance Functionals , 1988 .
[6] Adam J. Rothman,et al. Sparse estimation of large covariance matrices via a nested Lasso penalty , 2008, 0803.3872.
[7] Susumu Goto,et al. KEGG for representation and analysis of molecular networks involving diseases and drugs , 2009, Nucleic Acids Res..
[8] C. O. A. D. P. R. M. A. E. Stimation. Covariate Adjusted Precision Matrix Estimation with an Application in Genetical Genomics , 2011 .
[9] Bin Yu,et al. High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence , 2008, 0811.3628.
[10] Michael I. Jordan. Graphical Models , 2003 .
[11] Kyung-Ah Sohn,et al. Joint Estimation of Structured Sparsity and Output Structure in Multiple-Output Regression via Inverse-Covariance Regularization , 2012, AISTATS.
[12] Michael I. Jordan,et al. Multi-task feature selection , 2006 .
[13] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[14] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[15] R. Beran. Robust Location Estimates , 1977 .
[16] Pradeep Ravikumar,et al. Sparse inverse covariance matrix estimation using quadratic approximation , 2011, MLSLP.
[17] J. Wolfowitz. The Minimum Distance Method , 1957 .
[18] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[19] M. Yuan,et al. Model selection and estimation in the Gaussian graphical model , 2007 .
[20] Peter Z. G. Qian,et al. Sliced space-filling designs , 2009 .
[21] Alexandre d'Aspremont,et al. Model Selection Through Sparse Maximum Likelihood Estimation , 2007, ArXiv.
[22] Frank E. Curtis,et al. An adaptive gradient sampling algorithm for non-smooth optimization , 2013, Optim. Methods Softw..
[23] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[24] Martin J. Wainwright,et al. A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.
[25] Adam J Rothman,et al. Sparse Multivariate Regression With Covariance Estimation , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[26] P. Bickel,et al. Regularized estimation of large covariance matrices , 2008, 0803.1909.
[27] Hansheng Wang,et al. Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso , 2007 .
[28] Yufeng Liu,et al. Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood , 2012, J. Multivar. Anal..
[29] Michael L. Overton,et al. A Sequential Quadratic Programming Algorithm for Nonconvex, Nonsmooth Constrained Optimization , 2012, SIAM J. Optim..
[30] David W. Scott,et al. Parametric Statistical Modeling by Minimum Integrated Square Error , 2001, Technometrics.
[31] J. Friedman,et al. Predicting Multivariate Responses in Multiple Linear Regression , 1997 .
[32] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[33] Rachel B. Brem,et al. The landscape of genetic complexity across 5,700 gene expression traits in yeast. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[34] Takafumi Kanamori,et al. Density-Difference Estimation , 2012, Neural Computation.