Algorithms for Two Bottleneck Optimization Problems

A bottleneck optimization problem on a graph with edge costs is the problem of finding a subgraph of a certain kind that minimizes the maximum edge cost in the subgraph. The bottleneck objective contrasts with the more common objective of minimizing the sum of edge costs. We propose fast algorithms for two bottleneck optimization problems. For the problem of finding a bottleneck spanning tree in a directed graph of n vertices and m edges, we propose an O(min{n log n + m, m log∗ n})-timer algorithm. For the bottleneck maximum cardinality matching problem, we propose an O((n log n)12m)-time algorithm.

[1]  Manuel Blum,et al.  Time Bounds for Selection , 1973, J. Comput. Syst. Sci..

[2]  Arnold Schönhage,et al.  Finding the Median , 1976, J. Comput. Syst. Sci..

[3]  Robert S. Garfinkel,et al.  Technical Note - An Improved Algorithm for the Bottleneck Assignment Problem , 1971, Oper. Res..

[4]  H. H. Westermann Efficient algorithms for matroid sums , 1988 .

[5]  O. Gross THE BOTTLENECK ASSIGNMENT PROBLEM , 1959 .

[6]  Robert E. Tarjan,et al.  Efficient algorithms for finding minimum spanning trees in undirected and directed graphs , 1986, Comb..

[7]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.

[8]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[9]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[10]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[11]  Paolo M. Camerini The Min-Max Spanning Tree Problem and Some Extensions , 1978, Inf. Process. Lett..

[12]  Zvi Galil,et al.  Efficient Implementation of Graph Algorithms Using Contraction , 1984, FOCS.

[13]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[14]  Harold N. Gabow,et al.  A scaling algorithm for weighted matching on general graphs , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[15]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.