Characteristic flight speeds in bats

We present empirical data on flight speed for 30 species of Australian bats representing seven families. These data show five characteristic level flight speeds: ‘minimum’ (Vmin), ‘best efficiency’ (Veff), ‘most common’ (Vmode), ‘maximum cruise’ (Vmcr) and ‘maximum spurt’ (Vmsp). Next, we calculate Vmin, Veff, ‘maximum aerobic’ (Vae), ‘sustainable anaerobic’ (Vsan) and ‘maximum anaerobic’ (Vman) flight speeds using a published quasi-steady model. Model predictions were within 0.5 m s−1 of the empirical values for all five characteristic speeds given adequate samples. Model fidelity was cross-checked using flight speed data published for other Old and New World species.

[1]  Gottfried Sachs,et al.  Aerodynamic Cost of Flapping , 2015 .

[2]  R. Dudley,et al.  Hovering flight mechanics of neotropical flower bats (Phyllostomidae: Glossophaginae) in normodense and hypodense gas mixtures. , 2002, The Journal of experimental biology.

[3]  Ronald Strahan,et al.  MAMMALS OF AUSTRALIA , 1996 .

[4]  R. Bullen,et al.  An acoustic survey of zoophagic bats on islands in the Kimberley, Western Australia, including data on the echolocation ecology, organisation and habitat relationships of regional communities , 2012 .

[5]  A. Hedenström,et al.  Bat Flight Generates Complex Aerodynamic Tracks , 2007, Science.

[6]  William Crowther,et al.  Is flapping flight aerodynamically efficient , 2014 .

[7]  A Hedenström,et al.  Power of the wingbeat: modelling the effects of flapping wings in vertebrate flight , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  A. Guyton,et al.  Textbook of Medical Physiology , 1961 .

[9]  Kevin Hulme,et al.  Frequency-dependent power output and skeletal muscle design. , 2009, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[10]  Z. J. Wang Aerodynamic efficiency of flapping flight: analysis of a two-stroke model , 2008, Journal of Experimental Biology.

[11]  O. von Helversen,et al.  The energy cost of flight: do small bats fly more cheaply than birds? , 1998, Journal of Comparative Physiology B.

[12]  Williams,et al.  Correspondence Between Plight Morphology and Foraging Ecology in Some Palaeotropical Bats , 1995 .

[13]  J. M. V. Rayner,et al.  Flight performance, echolocation and foraging behaviour in pond bats, Myotis dasycneme (Chiroptera: Vespertilionidae). , 1997 .

[14]  T. Kunz,et al.  The cost of hovering and forward flight in a nectar-feeding bat, Glossophaga soricina, estimated from aerodynamic theory. , 1993, The Journal of experimental biology.

[15]  W. Bogdanowicz,et al.  Hematology of the hibernating bat: Myotis daubentoni. , 1987, Comparative biochemistry and physiology. A, Comparative physiology.

[16]  N. McKenzie,et al.  Bats of the southern Carnarvon Basin, Western Australia , 2000 .

[17]  M. Fenton Echolocation Calls and Patterns of Hunting and Habitiat Use of Bats (Microchiroptera) from Chillagoe, North Queensland , 1982 .

[18]  Colin J Pennycuick,et al.  Bird flight performance: a practical calculation manual , 1992 .

[19]  Gareth J. F. Jones Flight performance, echolocation and foraging behaviour in noctule bats Nyctalus noctula , 1995 .

[20]  R. Bullen,et al.  Aerodynamic cleanliness in bats , 2008 .

[21]  N. McKenzie,et al.  Bat airframe design: flight performance, stability and control in relation to foraging ecology , 2001 .

[22]  K. D. Jürgens,et al.  Blood oxygen transport and organ weights of small bats and small non-flying mammals. , 1981, Respiration physiology.

[23]  A. Hedenström,et al.  Leading-Edge Vortex Improves Lift in Slow-Flying Bats , 2008, Science.

[24]  W. A. Newsom,et al.  Effects of wing-leading-edge modifications on a full-scale, low-wing general aviation airplane: Wind-tunnel investigation of high-angle-of-attack aerodynamic characteristics. [conducted in Langley 30- by 60-foot tunnel , 1982 .

[25]  R. Bullen,et al.  Foraging ecology and organisation of a desert bat fauna , 2002 .

[26]  Joachim Peinke,et al.  Dynamic lift measurements on a FX79W151A airfoil via pressure distribution on the wind tunnel walls , 2007 .

[27]  J. Rayner Estimating power curves of flying vertebrates. , 1999, The Journal of experimental biology.

[28]  Fenton,et al.  Energetic consequences of flight speeds of foraging red and hoary bats (Lasiurus borealis and Lasiurus cinereus; Chiroptera: Vespertilionidae) , 1995, The Journal of experimental biology.

[29]  I. Godwin,et al.  Erythrocyte metabolism in two species of bats: common bent-wing bat (Miniopterus schreibersii) and red fruit bat (Pteropus scapulatus). , 1992, Comparative biochemistry and physiology. B, Comparative biochemistry.

[30]  G. Pérez-Suárez,et al.  Hematological data and hemoglobin components in bats (Vespertilionidae). , 1987, Comparative biochemistry and physiology. A, Comparative physiology.

[31]  Kenneth S. Breuer,et al.  Evolutionary History of Bats: A bird? A plane? No, it's a bat: an introduction to the biomechanics of bat flight , 2012 .

[32]  Graham N Askew,et al.  Muscle designed for maximum short-term power output: quail flight muscle. , 2002, The Journal of experimental biology.

[33]  R. M. Alexander,et al.  Energy for animal life , 1999 .

[34]  Colin J Pennycuick,et al.  THE MECHANICS OF BIRD MIGRATION , 2008 .

[35]  T. Fleming,et al.  Flight Speeds and Mechanical Power Outputs of the Nectar-Feedint Bat, Leptonycteris curasoae (Phyllostomidae: Glossophaginae) , 1993 .

[36]  Sharon M Swartz,et al.  Changes in kinematics and aerodynamics over a range of speeds in Tadarida brasiliensis, the Brazilian free-tailed bat , 2012, Journal of The Royal Society Interface.

[37]  Charles M. Bishop Heart mass and the maximum cardiac output of birds and mammals: implications for estimating the maximum aerobic power input of flying animals. , 1997 .

[38]  R. Bullen,et al.  Aerodynamic power and mechanical efficiency of bat airframes using a quasi-steady model , 2014 .

[39]  C. A. Long,et al.  Biology of Bats , 1972 .

[40]  A. Start The feeding biology in relation to food sources of nectarivorous bats (Chiroptera: Macroglossinae) in Malaysia , 1975 .

[41]  Alan H. Strahler,et al.  Study of bat flight behavior by combining thermal image analysis with a LiDAR forest reconstruction , 2013 .

[42]  T. Weis-Fogh Energetics of Hovering Flight in Hummingbirds and in Drosophila , 1972 .

[43]  J. Rayner,et al.  Flight performance, foraging tactics and echolocation in the trawling insectivorous bat Myotis adversus (Chiroptera: Vespertilionidae) , 1991 .

[44]  C. J. Pennycuick,et al.  Modelling the Flying Bird , 2008 .

[45]  J. Rayner,et al.  Flight performance, foraging tactics and echolocation in free‐living Daubenton's bats Myotis daubentoni (Chiroptera: Vespertilionidae) , 1988 .

[46]  N. McKenzie,et al.  A molecular and morphological investigation of species boundaries and phylogenetic relationships in Australian free-tailed bats Mormopterus (Chiroptera : Molossidae) , 2014, Australian Journal of Zoology.

[47]  H. Schnitzler,et al.  The echolocation and hunting behavior of Daubenton's bat, Myotis daubentoni , 1989, Behavioral Ecology and Sociobiology.

[48]  R. Bullen,et al.  Scaling bat wingbeat frequency and amplitude. , 2002, The Journal of experimental biology.

[49]  William G. Bousman,et al.  Airfoil Dynamic Stall and Rotorcraft Maneuverability , 2013 .

[50]  Haematology and iron status of the egyptian fruit bat, rousettus aegyptiacus , 1988 .

[51]  W. Sellers,et al.  The aerodynamics of big ears in the brown long-eared bat Plecotus auritus , 2008 .

[52]  Hao Liu,et al.  Recent progress in flapping wing aerodynamics and aeroelasticity , 2010 .

[53]  T. Fleming,et al.  Foraging behaviour and energetics of a nectar-feeding bat, Leptonycteris curasoae (Chiroptera: Phyllostomidae) , 1998 .

[54]  Orr Spiegel,et al.  Context-dependent flight speed: evidence for energetically optimal flight speed in the bat Pipistrellus kuhlii? , 2009, The Journal of animal ecology.

[55]  D. Heard,et al.  Hematologic and plasma biochemical reference values for three flying fox species (Pteropus sp.). , 1997, Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians.

[56]  J. S. Beard,et al.  Plant Life of Western Australia , 1993 .

[57]  H. Parnaby A taxonomic review of Australian Greater Long-eared Bats previously known as Nyctophilus timoriensis (Chiroptera: Vespertilionidae) and some associated taxa , 2009 .

[58]  Edward C Polhamus,et al.  Applying slender wing benefits to military aircraft , 1984 .

[59]  R. Bullen,et al.  Bat wing airfoil and planform structures relating to aerodynamic cleanliness , 2007 .

[60]  David J. Willis,et al.  Wing structure and the aerodynamic basis of flight in bats , 2007 .

[61]  R. Bullen,et al.  Bat heart mass: correlation with foraging niche and roost preference , 2009 .

[62]  A. Welch,et al.  New Soaring Pilot , 1968 .

[63]  R. Bullen,et al.  Bat flight-muscle mass: implications for foraging strategy , 2004 .

[64]  J. Rayner,et al.  Ecological Morphology and Flight in Bats (Mammalia; Chiroptera): Wing Adaptations, Flight Performance, Foraging Strategy and Echolocation , 1987 .

[65]  Per-Olof Persson,et al.  Numerical simulation of flapping wings using a panel method and a high‐order Navier–Stokes solver , 2012 .

[66]  Bruno Bruderer,et al.  Radar data on wing-beat frequencies and flight speeds of two bat species , 2005 .

[67]  V. Tucker,et al.  Bird Metabolism During Flight: Evaluation of a Theory , 1973 .

[68]  Hans-Ulrich Schnitzler,et al.  Fishing and echolocation behavior of the greater bulldog bat, Noctilio leporinus, in the field , 1994, Behavioral Ecology and Sociobiology.

[69]  N. McKenzie,et al.  Structure of bat guilds in the Kimberley mangroves, Australia , 1986 .

[70]  E. Torenbeek,et al.  Synthesis of Subsonic Airplane Design , 1979 .

[71]  R. Bullen,et al.  Can Some Australian Bats Take Advantage of Flat-Plate Aerodynamics? , 2013 .

[72]  Bruce J. Hayward,et al.  Flight Speeds in Western Bats , 1964 .