Perovskite solar cell performance assessment

Astounding progress in achieved power conversion efficiencies of solar cells based on metal-halide perovskite semiconductors has been achieved. Viable assessment of the long-term device performance is, therefore, now the most critical aspect to reliably predict device’s long-term performance. Standard testing protocols to enable cross-laboratory comparison need to be established and adopted. Apart from protocols targeting the assessment of device performance and stability, procedures to investigate potential meta-stabilities in devices under different operation conditions are required to describe degradation mechanisms. This understanding will guide further optimization of materials and devices. In this perspective, we emphasize the importance of wide-spread reporting of experimental data in common databases to keep track of the state-of-the-art of perovskite solar cell performance and stability achieved.

[1]  Joseph J. Berry,et al.  Stability in Perovskite Photovoltaics: A Paradigm for Newfangled Technologies , 2018, ACS Energy Letters.

[2]  Dieter Neher,et al.  Measuring Aging Stability of Perovskite Solar Cells , 2018 .

[3]  Wolfgang Tress,et al.  Metal Halide Perovskites as Mixed Electronic-Ionic Conductors: Challenges and Opportunities-From Hysteresis to Memristivity. , 2017, The journal of physical chemistry letters.

[4]  Tsutomu Miyasaka,et al.  Organic-Inorganic Halide Perovskite Photovoltaics , 2016 .

[5]  Wei Zhang,et al.  Photo-induced halide redistribution in organic–inorganic perovskite films , 2016, Nature Communications.

[6]  J. Galisteo‐López,et al.  Environmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites , 2015, The journal of physical chemistry letters.

[7]  J. Rappich,et al.  Unraveling the Light‐Induced Degradation Mechanisms of CH3NH3PbI3 Perovskite Films , 2017 .

[8]  Zhanhao Hu,et al.  Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation , 2019, Nature Energy.

[9]  Michael Saliba,et al.  A full overview of international standards assessing the long-term stability of perovskite solar cells , 2018, Journal of Materials Chemistry A.

[10]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[11]  Steve Albrecht,et al.  Transient Analysis during Maximum Power Point Tracking (TrAMPPT) to Assess Dynamic Response of Perovskite Solar Cells , 2019, 1906.05028.

[12]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[13]  E. von Hauff,et al.  Impedance Spectroscopy for Emerging Photovoltaics , 2019, The Journal of Physical Chemistry C.

[14]  Michael Grätzel,et al.  Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells , 2018, Nature Energy.

[15]  V. Sundström,et al.  "Supertrap" at Work: Extremely Efficient Nonradiative Recombination Channels in MAPbI3 Perovskites Revealed by Luminescence Super-Resolution Imaging and Spectroscopy. , 2017, ACS nano.

[16]  Prashant V Kamat,et al.  Best Practices in Perovskite Solar Cell Efficiency Measurements. Avoiding the Error of Making Bad Cells Look Good. , 2015, The journal of physical chemistry letters.

[17]  G. Boschloo,et al.  Photovoltage/photocurrent transient techniques , 2020 .

[18]  Hiroshi Segawa,et al.  Determination of unique power conversion efficiency of solar cell showing hysteresis in the I-V curve under various light intensities , 2017, Scientific Reports.

[19]  Yulia Galagan,et al.  Dynamics of photoinduced degradation of perovskite photovoltaics: from reversible to irreversible processes , 2018 .

[20]  Y. Qi,et al.  Progress toward Stable Lead Halide Perovskite Solar Cells , 2018, Joule.

[21]  Yanfa Yan,et al.  Tracking the maximum power point of hysteretic perovskite solar cells using a predictive algorithm , 2017 .

[22]  Reporting solar cell efficiencies in Solar Energy Materials and Solar Cells , 2008 .

[23]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[24]  Kai Zhu,et al.  Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures , 2020, Nature Energy.

[25]  Thomas Pfadler,et al.  Characterization of perovskite solar cells: Towards a reliable measurement protocol , 2016 .

[26]  J. Bisquert,et al.  Impedance Characteristics of Hybrid Organometal Halide Perovskite Solar Cells , 2016 .

[27]  Characterization Techniques for Perovskite Solar Cell Materials , 2020 .

[28]  Mukundan Thelakkat,et al.  Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells , 2017 .

[29]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[30]  P. Troshin,et al.  Microscopic insight into the reversibility of photodegradation in MAPbI3 thin films , 2020 .

[31]  Kai Zhu,et al.  Origin of J-V Hysteresis in Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[32]  Michael Grätzel,et al.  Hill climbing hysteresis of perovskite‐based solar cells: a maximum power point tracking investigation , 2017 .

[33]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[34]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[35]  A. Abate,et al.  Strategies toward Stable Perovskite Solar Cells , 2018, Advanced Materials Interfaces.

[36]  Anders Hagfeldt,et al.  Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells , 2017 .

[37]  A. Abate,et al.  Enhancement in lifespan of halide perovskite solar cells , 2019, Energy & Environmental Science.

[38]  Saif A. Haque,et al.  Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells , 2016 .

[39]  Joop Schoonman,et al.  Organic–inorganic lead halide perovskite solar cell materials: A possible stability problem , 2015 .

[40]  S. Haque,et al.  increased degradation rate of CH 3 NH 3 PbI 3 solar cells in combined water and O 2 environments † , 2017 .

[41]  Kaibo Zheng,et al.  Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold. , 2015, Physical chemistry chemical physics : PCCP.

[42]  Jenny Nelson,et al.  Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells , 2015 .

[43]  Rongrong Cheacharoen,et al.  Encapsulating perovskite solar cells to withstand damp heat and thermal cycling , 2018 .

[44]  A. Abate,et al.  Stability of materials and complete devices , 2020 .

[45]  Ripon Bhattacharjee,et al.  How reliable are efficiency measurements of perovskite solar cells? The first inter-comparison, between two accredited and eight non-accredited laboratories , 2017 .

[46]  Kevin G. Stamplecoskie,et al.  Dual nature of the excited state in organic–inorganic lead halide perovskites , 2015 .

[47]  Jenny Nelson,et al.  The reversible hydration of CH 3 NH 3 PbI 3 in films , single crystals and solar cells , 2016 .

[48]  Rongrong Cheacharoen,et al.  Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling , 2018 .

[49]  M. Vitelli,et al.  Optimization of perturb and observe maximum power point tracking method , 2005, IEEE Transactions on Power Electronics.

[50]  Henry J. Snaith,et al.  Research Update: Strategies for improving the stability of perovskite solar cells , 2016 .

[51]  Yulia Galagan,et al.  Reconsidering figures of merit for performance and stability of perovskite photovoltaics , 2018 .

[52]  M. Grätzel,et al.  Thermochemical Stability of Hybrid Halide Perovskites , 2019, ACS Energy Letters.

[53]  P. Docampo,et al.  CHAPTER 4. Solution-processed Solar Cells: Perovskite Solar Cells , 2019, Solar Energy Capture Materials.

[54]  Henry J. Snaith,et al.  How should you measure your excitonic solar cells , 2012 .

[55]  Anders Hagfeldt,et al.  Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions , 2019, Nature Energy.

[56]  Claudine Katan,et al.  Light-activated photocurrent degradation and self-healing in perovskite solar cells , 2016, Nature Communications.

[57]  Ralph Gottschalg,et al.  I-V performance characterisation of perovskite solar cells , 2018 .

[58]  Suren A. Gevorgyan,et al.  Consensus stability testing protocols for organic photovoltaic materials and devices , 2011 .

[59]  T. Edvinsson,et al.  Time resolved photo-induced optical spectroscopy , 2019 .

[60]  W. Tress,et al.  Current-voltage analysis: lessons learned from hysteresis , 2019 .

[61]  Michael Grätzel,et al.  Interaction of oxygen with halide perovskites , 2018 .

[62]  R. Munir,et al.  Alkali Salts as Interface Modifiers in n‐i‐p Hybrid Perovskite Solar Cells , 2019, Solar RRL.

[63]  Thomas Rath,et al.  The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. , 2015, Angewandte Chemie.

[64]  Michael D. McGehee,et al.  Reverse Bias Behavior of Halide Perovskite Solar Cells , 2018 .

[65]  Michael Saliba,et al.  Inverted Current–Voltage Hysteresis in Mixed Perovskite Solar Cells: Polarization, Energy Barriers, and Defect Recombination , 2016 .

[66]  Kai Zhu,et al.  Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. , 2016, Journal of the American Chemical Society.

[67]  S. Haque,et al.  Insights into the increased degradation rate of CH3NH3PbI3 solar cells in combined water and O2 environments , 2017 .

[68]  Nakita K. Noel,et al.  Hysteresis Index: A Figure without Merit for Quantifying Hysteresis in Perovskite Solar Cells , 2018, ACS Energy Letters.

[69]  Martin A. Green,et al.  Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells , 2020, Science.

[70]  Guangda Niu,et al.  Enhancement of thermal stability for perovskite solar cells through cesium doping , 2017 .

[71]  Feng Liu,et al.  Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. , 2015, Journal of the American Chemical Society.

[72]  Carl M. Lampert,et al.  Editorial: Reporting solar cell efficiencies in Solar Energy Materials and Solar Cells , 2008 .

[73]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .