C 60 -Related Tubules and Spherules

[1]  D. Ugarte Onion-Like Graphitic Particles , 1995 .

[2]  W. Heer,et al.  Magnetic anisotropies of aligned carbon nanotubes. , 1995, Physical review. B, Condensed matter.

[3]  D. Ugarte,et al.  Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties , 1995, Science.

[4]  Miyamoto,et al.  Synthesis of BxCyNz nanotubules. , 1995, Physical review. B, Condensed matter.

[5]  Cohen,et al.  Quasiparticle band structure of bulk hexagonal boron nitride and related systems. , 1995, Physical review. B, Condensed matter.

[6]  X. B. Zhang,et al.  A Structure Model and Growth Mechanism for Multishell Carbon Nanotubes , 1995, Science.

[7]  C. Guerret-Piecourt,et al.  Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes , 1994, Nature.

[8]  R. Saito,et al.  Magnetic energy bands of carbon nanotubes. , 1994, Physical review. B, Condensed matter.

[9]  S. Louie,et al.  Stability and Band Gap Constancy of Boron Nitride Nanotubes , 1994 .

[10]  Malcolm L. H. Green,et al.  A simple chemical method of opening and filling carbon nanotubes , 1994, Nature.

[11]  T. Baum,et al.  Fullerenes and their ions in hydrocarbon flames , 1994 .

[12]  J. M. Cowley,et al.  Electron channelling effects at high incident angles in convergent beam reflection high energy electron diffraction , 1994 .

[13]  P. Ajayan,et al.  Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite , 1994, Science.

[14]  R. Ruoff,et al.  Structural properties of a carbon-nanotube crystal. , 1994, Physical review letters.

[15]  J. Howard,et al.  Carbon shells in flames , 1994, Nature.

[16]  Dan Zhou,et al.  Microscopy of single-layer carbon nanotubes , 1994 .

[17]  T. Ebbesen,et al.  Electron spin resonance of carbon nanotubes , 1994 .

[18]  Kenji Nakao,et al.  Electronic and Lattice Properties of Carbon Nanotubes , 1994 .

[19]  Morelli,et al.  Magnetic susceptibility of carbon structures. , 1994, Physical review. B, Condensed matter.

[20]  W. Goddard,et al.  CATALYTIC SYNTHESIS OF SINGLE-LAYER CARBON NANOTUBES WITH A WIDE RANGE OF DIAMETERS , 1994 .

[21]  J. Ketterson,et al.  Magnetic susceptibility of buckytubes , 1994 .

[22]  A. Chuvilin,et al.  Onion-like carbon from ultra-disperse diamond , 1994 .

[23]  T. S. Radhakrishnan,et al.  Structure and vibrational properties of carbon tubules , 1994 .

[24]  S. Seraphin,et al.  Single-walled carbon nanotubes produced at high yield by mixed catalysts , 1994 .

[25]  W. Blau,et al.  Resonance Raman and infrared spectroscopy of carbon nanotubes , 1994 .

[26]  M. S. Dresselhaus,et al.  Raman scattering from nanoscale carbons generated in a cobalt-catalyzed carbon plasma , 1994 .

[27]  Vincent Bayot,et al.  Electrical resistance of a carbon nanotube bundle , 1994 .

[28]  Benedict,et al.  Hybridization effects and metallicity in small radius carbon nanotubes. , 1994, Physical review letters.

[29]  Lu,et al.  Density-functional calculations of the structure and stability of C240. , 1994, Physical review. B, Condensed matter.

[30]  Stephan,et al.  Growth of manganese filled carbon nanofibers in the vapor phase. , 1994, Physical review letters.

[31]  J. Charlier,et al.  Electronic band structure of multilayered carbon tubules , 1994 .

[32]  Joseph P. Heremans,et al.  Scanning tunneling spectroscopy of carbon nanotubes , 1994 .

[33]  Chang,et al.  Electronic properties of graphite nanotubules from galvanomagnetic effects. , 1994, Physical review letters.

[34]  N. Hatta,et al.  Very long graphitic nano-tubules synthesized by plasma-decomposition of benzene , 1994 .

[35]  Kenji Takeuchi,et al.  The production and structure of pyrolytic carbon nanotubes (PCNTs) , 1993 .

[36]  D. Robertson,et al.  Properties of fullerene nanotubules , 1993 .

[37]  Patrick W. Fowler,et al.  Cylindrical fullerenes: The smallest nanotubes? , 1993 .

[38]  D. Tománek,et al.  Stability of multishell fullerenes. , 1993, Physical review. B, Condensed matter.

[39]  Y. Saito,et al.  Iron particles nesting in carbon cages grown by arc discharge , 1993 .

[40]  Rodney S. Ruoff,et al.  Radial deformation of carbon nanotubes by van der Waals forces , 1993, Nature.

[41]  Hiroshi Ajiki,et al.  Magnetic Properties of Carbon Nanotubes , 1993 .

[42]  P. Eklund,et al.  Nanocrystalline α–Fe, Fe_3C, and Fe_7C_3 produced by CO_2 laser pyrolysis , 1993 .

[43]  Yoshinori Ando,et al.  Synthesis and electron-beam incision of carbon nanocapsules encaging YC2 , 1993 .

[44]  M. Dresselhaus,et al.  Phonon modes in carbon nanotubules , 1993 .

[45]  T. Ebbesen,et al.  Patterns in the bulk growth of carbon nanotubes , 1993 .

[46]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[47]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[48]  Dresselhaus,et al.  Symmetry properties of chiral carbon nanotubes. , 1993, Physical review. B, Condensed matter.

[49]  Sattler,et al.  Giant and supergiant lattices on graphite. , 1993, Physical review. B, Condensed matter.

[50]  X. B. Zhang,et al.  Carbon nano-tubes; their formation process and observation by electron microscopy , 1993 .

[51]  Charles M. Lieber,et al.  Nanotube structure and electronic properties probed by scanning tunneling microscopy , 1993 .

[52]  D. Ugarte Formation mechanism of quasi-spherical carbon particles induced by electron bombardment , 1993 .

[53]  Bernholc,et al.  Structure and energetics of single and multilayer fullerene cages. , 1993, Physical review letters.

[54]  R. Smalley,et al.  On the energetics of tubular fullerenes , 1993 .

[55]  K. Sattler,et al.  Vapor-Condensation Generation and STM Analysis of Fullerene Tubes , 1993, Science.

[56]  M. Dresselhaus,et al.  Group theoretical concepts for C60 and other fullerenes , 1993 .

[57]  Riichiro Saito,et al.  Electronic structure and growth mechanism of carbon tubules , 1993 .

[58]  Sumio Iijima,et al.  Growth of carbon nanotubes , 1993 .

[59]  R. Smalley From dopyballs to nanowires , 1993 .

[60]  T. Ichihashi,et al.  Opening carbon nanotubes with oxygen and implications for filling , 1993, Nature.

[61]  Malcolm L. H. Green,et al.  Thinning and opening of carbon nanotubes by oxidation using carbon dioxide , 1993, Nature.

[62]  D. Ugarte,et al.  Canonical structure of large carbon clusters : Cn, n > 100 , 1993 .

[63]  Lupi,et al.  Observation of a midinfrared band in SrTiO3-y. , 1993, Physical review. B, Condensed matter.

[64]  Charlier,et al.  Energetics of multilayered carbon tubules. , 1993, Physical review letters.

[65]  Iijima,et al.  Electron-energy-loss spectroscopy of carbon nanometer-size tubes. , 1993, Physical review. B, Condensed matter.

[66]  J. Ketterson,et al.  Buckytubes and Derivatives: Their Growth and Implications for Buckyball Formation , 1993, Science.

[67]  White,et al.  Helical and rotational symmetries of nanoscale graphitic tubules. , 1993, Physical review. B, Condensed matter.

[68]  David Tománek,et al.  Structural rigidity and low frequency vibrational modes of long carbon tubules , 1993 .

[69]  Kolář,et al.  New class of one-dimensional quasicrystals. , 1993, Physical review. B, Condensed matter.

[70]  Masato Tomita,et al.  LaC2 Encapsulated in Graphite Nano-Particle , 1993 .

[71]  Hiroaki Takahashi,et al.  Raman studies of carbon nanotubes , 1993 .

[72]  Mitsuho Yoshida,et al.  Molecular Mechanics Calculations of Giant- and Hyperfullerenes with Eicosahedral Symmetry , 1993 .

[73]  D. Sarid,et al.  Characterization of carbon nanotubes by scanning probe microscopy , 1993 .

[74]  P. Ajayan,et al.  Capillarity-induced filling of carbon nanotubes , 1993, Nature.

[75]  Bernholc,et al.  Atomic structure and doping of microtubules. , 1993, Physical review. B, Condensed matter.

[76]  M. Dresselhaus,et al.  Electronic structure of double‐layer graphene tubules , 1993 .

[77]  Rodney S. Ruoff,et al.  Single Crystal Metals Encapsulated in Carbon Nanoparticles , 1993, Science.

[78]  Tersoff Energies of fullerenes. , 1992, Physical review. B, Condensed matter.

[79]  Broughton,et al.  Nanocapillarity in fullerene tubules. , 1992, Physical review letters.

[80]  D. Ugarte Curling and closure of graphitic networks under electron-beam irradiation , 1992, Nature.

[81]  M. Dresselhaus,et al.  C60-related tubules , 1992 .

[82]  H. Kroto Carbon onions introduce new flavour to fullerene studies , 1992, Nature.

[83]  N. Hamada,et al.  Energetics of carbon nano-tubes , 1992 .

[84]  Morinobu Endo,et al.  Formation of Carbon Nanofibers , 1992 .

[85]  M. Dresselhaus,et al.  Topological defects in large fullerenes , 1992 .

[86]  M. S. Dresselhaus,et al.  Down the straight and narrow , 1992, Nature.

[87]  Fujita,et al.  Electronic structure of graphene tubules based on C60. , 1992, Physical review. B, Condensed matter.

[88]  Dunlap,et al.  Connecting carbon tubules. , 1992, Physical review. B, Condensed matter.

[89]  P. Ajayan,et al.  Smallest carbon nanotube , 1992, Nature.

[90]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[91]  Donald W. Brenner,et al.  On the way to fullerenes : molecular dynamics study of the Curling and closure of graphitic ribbons , 1992 .

[92]  David Alan Drabold,et al.  Energetics of Large Fullerenes: Balls, Tubes, and Capsules , 1992, Science.

[93]  Fujita,et al.  Formation of general fullerenes by their projection on a honeycomb lattice. , 1992, Physical review. B, Condensed matter.

[94]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[95]  Harigaya From C60 to a fullerene tube: Systematic analysis of lattice and electronic structures by the extended Su-Schrieffer-Heeger model. , 1992, Physical review. B, Condensed matter.

[96]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[97]  A. Zakhidov,et al.  Magnetic properties of TDAE-C60 and TDAE-C70. A comparative study , 1992 .

[98]  Yoshinori Ando,et al.  Pentagons, heptagons and negative curvature in graphite microtubule growth , 1992, Nature.

[99]  M. Dresselhaus,et al.  Carbon fibers based on C60 and their symmetry. , 1992, Physical review. B, Condensed matter.

[100]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[101]  R. Smalley,et al.  Self-assembly of the fullerenes , 1992 .

[102]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.

[103]  K. Harigaya Lattice distortion and energy-level structures in doped C70 by the extended Su-Schrieffer-Heeger model , 1992 .

[104]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[105]  P. Buseck,et al.  Packing of C60 molecules and related fullerenes in crystals: a direct view , 1991 .

[106]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[107]  Bayot,et al.  Weak localization in pregraphitic carbon fibers. , 1989, Physical review. B, Condensed matter.

[108]  W. Bassett,et al.  Melting of carbon at 50 to 300 kbar , 1987 .

[109]  Clarke,et al.  Theory and observation of highly asymmetric atomic structure in scanning-tunneling-microscopy images of graphite. , 1987, Physical review. B, Condensed matter.

[110]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[111]  Stone Ad Magnetoresistance fluctuations in mesoscopic wires and rings. , 1985 .

[112]  J. Mintmire,et al.  Conformation and Electronic Properties of Helical Cis-Polyacetylene , 1985 .

[113]  R. S. Robinson,et al.  Ion‐bombardment‐induced whisker formation on graphite , 1983 .

[114]  M. Dresselhaus,et al.  High-field magnetoresistance measurements on highly ordered graphite fibers , 1983 .

[115]  Gene Dresselhaus,et al.  Lattice-dynamical model for graphite , 1982 .

[116]  B. T. Kelly,et al.  Physics of Graphite , 1981 .

[117]  M. Dresselhaus,et al.  Intercalation compounds of graphite , 1981 .

[118]  D. Hofstadter Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields , 1976 .

[119]  A. Oberlin,et al.  Filamentous growth of carbon through benzene decomposition , 1976 .

[120]  K. Mani,et al.  Lattice Dynamics of Graphite , 1974, February 1.

[121]  R. D. Heidenreich,et al.  A test object and criteria for high resolution electron microscopy , 1968 .

[122]  E. Brown,et al.  Model Calculations of Magnetic Band Structure , 1968 .

[123]  C. Klein STB Model and Transport Properties of Pyrolytic Graphites , 1964, IBM J. Res. Dev..

[124]  J. W. Mcclure Theory of Diamagnetism of Graphite , 1960 .

[125]  Roger Bacon,et al.  Growth, Structure, and Properties of Graphite Whiskers , 1960 .

[126]  H. Fröhlich,et al.  Interaction of electrons with lattice vibrations , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[127]  H. Fröhlich,et al.  Theory of the superconducting state. I. The ground state at the absolute zero of temperature , 1950 .

[128]  P. Wallace The Band Theory of Graphite , 1947 .

[129]  K. S. Krishnan,et al.  Magnetic and other properties of the free electrons in graphite , 1941, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[130]  Rodney S. Ruoff,et al.  Mechanical and thermal properties of carbon nanotubes , 1995 .

[131]  J. Heremans,et al.  Electronic properties of carbon nanotubes: Experimental results , 1995 .

[132]  Riichiro Saito,et al.  Physics of carbon nanotubes , 1995 .

[133]  Yahachi Saito,et al.  Nanoparticles and filled nanocapsules , 1995 .

[134]  K. Sattler SCANNING TUNNELING MICROSCOPY OF CARBON NANOTUBES AND NANOCONES , 1995 .

[135]  J. Charlier,et al.  First-Principles Study of Carbon Nanotube Solid-State Packings , 1995 .

[136]  W. Goddard,et al.  Carbon nanotubes with single-layer walls , 1995 .

[137]  John W. Mintmire,et al.  Electronic and structural properties of carbon nanotubes , 1995 .

[138]  J. Charlier,et al.  First-principles study of the stacking effect on the electronic properties of graphite(s) , 1994 .

[139]  R. Ruoff,et al.  Magnetic separation of GdC2 encapsulated in carbon nanoparticles , 1994 .

[140]  Michael A. Wilson,et al.  Composition of cathode deposits during fullerene production by carbon arc plasma , 1994 .

[141]  James C. Withers,et al.  Yttrium carbide in nanotubes , 1993, Nature.

[142]  James C. Withers,et al.  Effect of processing conditions on the morphology and yield of carbon nanotubes , 1993 .

[143]  P. Fowler,et al.  Isomerisations of the fullerenes , 1992 .

[144]  J. S. Speck Thermodynamic calculations of the graphitization of carbon blacks , 1990 .

[145]  M. S. Dresselhaus,et al.  Model for Raman scattering from incompletely graphitized carbons , 1982 .

[146]  A. Oberlin,et al.  High resolution electron microscope observations of graphitized carbon fibers , 1976 .

[147]  H. G. Smith,et al.  Lattice Dynamics of Pyrolytic Graphite , 1972 .

[148]  G. S. Painter,et al.  Electronic band structure and optical properties of graphite from a variational approach , 1970 .

[149]  M. Tinkham Group Theory and Quantum Mechanics , 1964 .