Systems analysis of the effect of hydrogen sulfide on the growth of Methylococcus capsulatus Bath

[1]  M. Filipovic,et al.  The Role of Protein Persulfidation in Brain Aging and Neurodegeneration , 2021, Frontiers in Aging Neuroscience.

[2]  J. Helmann,et al.  Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress , 2021, Frontiers in Molecular Biosciences.

[3]  Nadezhda T. Doncheva,et al.  The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets , 2020, Nucleic Acids Res..

[4]  I. Angelidaki,et al.  Sulfide restrains the growth of Methylocapsa acidiphila converting renewable biogas to single cell protein. , 2020, Water research.

[5]  Ling Lin,et al.  Proteomics analysis reveals the effect of Aeromonas hydrophila sirtuin CobB on biological functions. , 2020, Journal of proteomics.

[6]  M. Winkler,et al.  A Complex Interplay between Nitric Oxide, Quorum Sensing, and the Unique Secondary Metabolite Tundrenone Constitutes the Hypoxia Response in Methylobacter , 2020, mSystems.

[7]  Lena J. Daumann Essential and Ubiquitous: The Emergence of Lanthanide Metallobiochemistry. , 2019, Angewandte Chemie.

[8]  H. Schäfer,et al.  Identification of Proteins and Genes Expressed by Methylophaga thiooxydans During Growth on Dimethylsulfide and Their Presence in Other Members of the Genus , 2019, Front. Microbiol..

[9]  J. S. Sinninghe Damsté,et al.  Fatty Acid and Hopanoid Adaption to Cold in the Methanotroph Methylovulum psychrotolerans , 2019, Front. Microbiol..

[10]  Timothy Tapscott,et al.  Development of a CRISPR/Cas9 System for Methylococcus capsulatus In Vivo Gene Editing , 2019, Applied and Environmental Microbiology.

[11]  Q. Cui,et al.  Sulfhydrated Sirtuin-1 Increasing Its Deacetylation Activity Is an Essential Epigenetics Mechanism of Anti-Atherogenesis by Hydrogen Sulfide. , 2018, Antioxidants & redox signaling.

[12]  A. Misra,et al.  Homologs from sulfur oxidation (Sox) and methanol dehydrogenation (Xox) enzyme systems collaborate to give rise to a novel pathway of chemolithotrophic tetrathionate oxidation , 2018, Molecular microbiology.

[13]  J. López,et al.  Technologies for the bioconversion of methane into more valuable products. , 2018, Current opinion in biotechnology.

[14]  Lvqin He,et al.  QseC Mediates Osmotic Stress Resistance and Biofilm Formation in Haemophilus parasuis , 2018, Front. Microbiol..

[15]  L. Xun,et al.  Cupriavidus necator H16 Uses Flavocytochrome c Sulfide Dehydrogenase To Oxidize Self-Produced and Added Sulfide , 2017, Applied and Environmental Microbiology.

[16]  Jihua Liu,et al.  Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions , 2017, The ISME Journal.

[17]  Frédéric Barras,et al.  Oxidative stress, protein damage and repair in bacteria , 2017, Nature Reviews Microbiology.

[18]  E. Allen,et al.  Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1) , 2017, Front. Microbiol..

[19]  Yebo Li,et al.  Isolation of a methanotroph from a hydrogen sulfide-rich anaerobic digester for methanol production from biogas , 2016 .

[20]  J. Imlay,et al.  The cytochrome bd oxidase of Escherichia coli prevents respiratory inhibition by endogenous and exogenous hydrogen sulfide , 2016, Molecular microbiology.

[21]  Woojun Park,et al.  Role of Glyoxylate Shunt in Oxidative Stress Response* , 2016, The Journal of Biological Chemistry.

[22]  J. B. Vicente,et al.  The Terminal Oxidase Cytochrome bd Promotes Sulfide-resistant Bacterial Respiration and Growth , 2016, Scientific Reports.

[23]  M. Lidstrom,et al.  XoxF Acts as the Predominant Methanol Dehydrogenase in the Type I Methanotroph Methylomicrobium buryatense , 2016, Journal of bacteriology.

[24]  David A. C. Beck,et al.  Genetic Tools for the Industrially Promising Methanotroph Methylomicrobium buryatense , 2014, Applied and Environmental Microbiology.

[25]  Huub J. M. Op den Camp,et al.  PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference , 2014, Applied Microbiology and Biotechnology.

[26]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[27]  Germán Aroca,et al.  Oxidation of methane by Methylomicrobium album and Methylocystis sp. in the presence of H2S and NH3 , 2013, Biotechnology Letters.

[28]  Qun Ma,et al.  Protein acetylation in prokaryotes increases stress resistance. , 2011, Biochemical and biophysical research communications.

[29]  H. Michel,et al.  A new structure‐based classification of sulfide:quinone oxidoreductases , 2010, Proteins.

[30]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[31]  H. Michel,et al.  The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification and respiration , 2009, Proceedings of the National Academy of Sciences.

[32]  Carlos C. Goller,et al.  Roles of pgaABCD Genes in Synthesis, Modification, and Export of the Escherichia coli Biofilm Adhesin Poly-β-1,6-N-Acetyl-d-Glucosamine , 2008, Journal of bacteriology.

[33]  P. Pennefather,et al.  H2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation. , 2004, Toxicology.

[34]  Peter D. Karp,et al.  An Evidence Ontology for Use in Pathway/Genome Databases , 2003, Pacific Symposium on Biocomputing.

[35]  N. Esaki,et al.  Bacterial cysteine desulfurases: their function and mechanisms , 2002, Applied Microbiology and Biotechnology.

[36]  Vanessa Sperandio,et al.  Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two‐component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli , 2002, Molecular microbiology.

[37]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[38]  Ryan C. Kunz,et al.  Membrane-Associated Quinoprotein Formaldehyde Dehydrogenase from Methylococcus capsulatus Bath , 2001, Journal of bacteriology.

[39]  Thomas E Hanson,et al.  Methanotrophic bacteria , 1996 .

[40]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[41]  R. Whittenbury,et al.  Enrichment, isolation and some properties of methane-utilizing bacteria. , 1970, Journal of general microbiology.

[42]  FujimotoHaruki The Oxidation of Methane , 1938 .

[43]  Surface Production Operations , 2019 .

[44]  A. Rosenzweig,et al.  Recent Advances in the Genetic Manipulation of Methylosinus trichosporium OB3b. , 2018, Methods in enzymology.

[45]  小森和樹 Gene Expression Omnibus利用方法の検討 , 2016 .

[46]  S. Mokhatab Chapter 3 – Basic Concepts of Natural Gas Processing , 2015 .

[47]  J. C. Gentina,et al.  Oxidation of methane by Methylomicrobium album and Methylocystis sp. in the presence of H2S and NH3 , 2013, Biotechnology Letters.

[48]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[49]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[50]  C. Anthony Bacterial oxidation of methane and methanol. , 1986, Advances in microbial physiology.

[51]  N. Pfennig,et al.  [Utilisation of molecular hydrogen by Chlorobium thiosulfatophilum. Growth and CO2-fixation]. , 1969, Archiv fur Mikrobiologie.