Local path planning for mobile robots based on intermediate objectives

This paper presents a path planning algorithm for autonomous navigation of non-holonomic mobile robots in complex environments. The irregular contour of obstacles is represented by segments. The goal of the robot is to move towards a known target while avoiding obstacles. The velocity constraints, robot kinematic model and non-holonomic constraint are considered in the problem. The optimal path planning problem is formulated as a constrained receding horizon planning problem and the trajectory is obtained by solving an optimal control problem with constraints. Local minima are avoided by choosing intermediate objectives based on the real time environment.

[1]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[2]  Michael Jenkin,et al.  Computational Principles of Mobile Robotics: Bibliography , 2010 .

[3]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[4]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.

[5]  Michael R. M. Jenkin,et al.  Computational principles of mobile robotics , 2000 .

[6]  Vladimir J. Lumelsky,et al.  Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape , 1987, Algorithmica.

[7]  Yi Guo,et al.  Optimal trajectory generation for nonholonomic robots in dynamic environments , 2008, 2008 IEEE International Conference on Robotics and Automation.

[8]  Andreas C. Nearchou,et al.  Path planning of a mobile robot using genetic heuristics , 1998, Robotica.

[9]  Mirjana Bonković,et al.  Robot motion planning using exact cell decomposition and potential field methods , 2009 .

[10]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Judy Pearsall,et al.  The Concise Oxford Dictionary , 1999 .

[12]  J. Schwartz,et al.  On the “piano movers'” problem I. The case of a two‐dimensional rigid polygonal body moving amidst polygonal barriers , 1983 .

[13]  Han-Pang Huang,et al.  Dynamic visibility graph for path planning , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[14]  Yoram Koren,et al.  Potential field methods and their inherent limitations for mobile robot navigation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[15]  Rodney A. Brooks,et al.  A subdivision algorithm in configuration space for findpath with rotation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[17]  Anthony Stentz,et al.  Optimal and efficient path planning for partially-known environments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[18]  B. E. Eckbo,et al.  Appendix , 1826, Epilepsy Research.

[19]  H. Michalska,et al.  Receding horizon control of nonlinear systems , 1988, Proceedings of the 28th IEEE Conference on Decision and Control,.

[20]  Craig T. Lawrence,et al.  A Computationally Efficient Feasible Sequential Quadratic Programming Algorithm , 2000, SIAM J. Optim..

[21]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[22]  W. Perruquetti,et al.  Autonomous navigation of a nonholonomic mobile robot in a complex environment , 2008, 2008 IEEE International Workshop on Safety, Security and Rescue Robotics.

[23]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[24]  Anthony Stentz,et al.  Mobile Robot Navigation: The CMU System , 1987, IEEE Expert.

[25]  Ilya Kolmanovsky,et al.  Developments in nonholonomic control problems , 1995 .

[26]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[27]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[28]  Keiji Nagatani,et al.  Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization , 2001, IEEE Trans. Robotics Autom..

[29]  Jian L. Zhou,et al.  User's Guide for CFSQP Version 2.0: A C Code for Solving (Large Scale) Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality Constraints , 1994 .

[30]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[31]  Michael Defoort,et al.  Performance-based reactive navigation for non-holonomic mobile robots , 2009, Robotica.

[32]  Antonio Bicchi,et al.  Planning shortest bounded-curvature paths for a class of nonholonomic vehicles among obstacles , 1996, J. Intell. Robotic Syst..

[33]  J. T. Shwartz,et al.  On the Piano Movers' Problem : III , 1983 .