Construction-free median quasi-Monte Carlo rules for function spaces with unspecified smoothness and general weights

We study quasi-Monte Carlo (QMC) integration of smooth functions defined over the multi-dimensional unit cube. Inspired by a recent work of Pan and Owen, we study a new construction-free median QMC rule which can exploit the smoothness and the weights of function spaces adaptively. For weighted Korobov spaces, we draw a sample of r independent generating vectors of rank-1 lattice rules, compute the integral estimate for each, and approximate the true integral by the median of these r estimates. For weighted Sobolev spaces, we use the same approach but with the rank-1 lattice rules replaced by high-order polynomial lattice rules. A major advantage over the existing approaches is that we do not need to construct good generating vectors by a computer search algorithm, while our median QMC rule achieves almost the optimal worst-case error rate for the respective function space with any smoothness and weights, with a probability that converges to 1 exponentially fast as r increases. Numerical experiments illustrate and support our theoretical findings.

[1]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[2]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[3]  Friedrich Pillichshammer,et al.  Polynomial Lattice Point Sets , 2012 .

[4]  Pierre L'Ecuyer,et al.  Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .

[5]  G. Leobacher,et al.  Introduction to Quasi-Monte Carlo Integration and Applications , 2014 .

[6]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[7]  P. Marion,et al.  A Tool for Custom Construction of QMC and RQMC Point Sets , 2020, MCQMC.

[8]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[9]  Frances Y. Kuo,et al.  Component-by-Component Construction of Good Lattice Rules with a Composite Number of Points , 2002, J. Complex..

[10]  Dirk Nuyens,et al.  Lattice rules for nonperiodic smooth integrands , 2014, Numerische Mathematik.

[11]  Dirk Nuyens,et al.  Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules , 2011, Numerical Algorithms.

[12]  Ian H. Sloan,et al.  Component-by-component construction of good lattice rules , 2002, Math. Comput..

[13]  Peter Kritzer,et al.  Digit-by-digit and component-by-component constructions of lattice rules for periodic functions with unknown smoothness , 2020, J. Complex..

[14]  Frances Y. Kuo,et al.  Tent-transformed lattice rules for integration and approximation of multivariate non-periodic functions , 2016, J. Complex..

[15]  P. L’Ecuyer,et al.  Algorithm 958: Lattice Builder: A General Software Tool for Constructing Rank-1 Lattice Rules , 2015, ACM Trans. Math. Softw..

[16]  Josef Dick,et al.  Stability of lattice rules and polynomial lattice rules constructed by the component-by-component algorithm , 2019, J. Comput. Appl. Math..

[17]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[18]  Frances Y. Kuo,et al.  Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..

[19]  C. Lemieux Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .

[20]  P. L’Ecuyer,et al.  On Figures of Merit for Randomly-Shifted Lattice Rules , 2012 .

[21]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[22]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[23]  Aicke Hinrichs,et al.  Proof techniques in quasi-Monte Carlo theory , 2014, J. Complex..

[24]  Harald Niederreiter,et al.  Low-discrepancy point sets obtained by digital constructions over finite fields , 1992 .

[25]  Takashi Goda,et al.  Lattice rules in non-periodic subspaces of Sobolev spaces , 2019, Numerische Mathematik.

[26]  Frances Y. Kuo,et al.  Higher Order QMC Petrov-Galerkin Discretization for Affine Parametric Operator Equations with Random Field Inputs , 2014, SIAM J. Numer. Anal..

[27]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[28]  Art B. Owen,et al.  Super-polynomial accuracy of one dimensional randomized nets using the median-of-means , 2021, ArXiv.

[29]  Takashi Goda,et al.  Good interlaced polynomial lattice rules for numerical integration in weighted Walsh spaces , 2013, J. Comput. Appl. Math..

[30]  F. J. Hickernell Obtaining O( N - 2+∈ ) Convergence for Lattice Quadrature Rules , 2002 .

[31]  G. Mullen,et al.  Primitive polynomials over finite fields , 1992 .

[32]  Josef Dick,et al.  Walsh Spaces Containing Smooth Functions and Quasi-Monte Carlo Rules of Arbitrary High Order , 2008, SIAM J. Numer. Anal..

[33]  Henryk Wozniakowski,et al.  Good Lattice Rules in Weighted Korobov Spaces with General Weights , 2006, Numerische Mathematik.

[34]  Pierre L'Ecuyer,et al.  Randomized Polynomial Lattice Rules for Multivariate Integration and Simulation , 2001, SIAM J. Sci. Comput..

[35]  Takashi Goda,et al.  Quasi-Monte Carlo integration using digital nets with antithetics , 2015, J. Comput. Appl. Math..

[36]  P. L’Ecuyer,et al.  Randomized quasi-Monte Carlo: An introduction for practitioners , 2016 .

[37]  James A. Nichols,et al.  Fast CBC construction of randomly shifted lattice rules achieving O(n-1+δ) convergence for unbounded integrands over R5 in weighted spaces with POD weights , 2014, J. Complex..

[38]  Josef Dick,et al.  Construction of Interlaced Scrambled Polynomial Lattice Rules of Arbitrary High Order , 2013, Found. Comput. Math..

[39]  Dirk Nuyens,et al.  Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..

[40]  Josef Dick,et al.  Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules , 2007, J. Complex..