Construction-free median quasi-Monte Carlo rules for function spaces with unspecified smoothness and general weights
暂无分享,去创建一个
[1] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[2] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[3] Friedrich Pillichshammer,et al. Polynomial Lattice Point Sets , 2012 .
[4] Pierre L'Ecuyer,et al. Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .
[5] G. Leobacher,et al. Introduction to Quasi-Monte Carlo Integration and Applications , 2014 .
[6] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[7] P. Marion,et al. A Tool for Custom Construction of QMC and RQMC Point Sets , 2020, MCQMC.
[8] Frances Y. Kuo,et al. High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.
[9] Frances Y. Kuo,et al. Component-by-Component Construction of Good Lattice Rules with a Composite Number of Points , 2002, J. Complex..
[10] Dirk Nuyens,et al. Lattice rules for nonperiodic smooth integrands , 2014, Numerische Mathematik.
[11] Dirk Nuyens,et al. Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules , 2011, Numerical Algorithms.
[12] Ian H. Sloan,et al. Component-by-component construction of good lattice rules , 2002, Math. Comput..
[13] Peter Kritzer,et al. Digit-by-digit and component-by-component constructions of lattice rules for periodic functions with unknown smoothness , 2020, J. Complex..
[14] Frances Y. Kuo,et al. Tent-transformed lattice rules for integration and approximation of multivariate non-periodic functions , 2016, J. Complex..
[15] P. L’Ecuyer,et al. Algorithm 958: Lattice Builder: A General Software Tool for Constructing Rank-1 Lattice Rules , 2015, ACM Trans. Math. Softw..
[16] Josef Dick,et al. Stability of lattice rules and polynomial lattice rules constructed by the component-by-component algorithm , 2019, J. Comput. Appl. Math..
[17] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[18] Frances Y. Kuo,et al. Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..
[19] C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .
[20] P. L’Ecuyer,et al. On Figures of Merit for Randomly-Shifted Lattice Rules , 2012 .
[21] J. Rosser,et al. Approximate formulas for some functions of prime numbers , 1962 .
[22] Frances Y. Kuo,et al. Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.
[23] Aicke Hinrichs,et al. Proof techniques in quasi-Monte Carlo theory , 2014, J. Complex..
[24] Harald Niederreiter,et al. Low-discrepancy point sets obtained by digital constructions over finite fields , 1992 .
[25] Takashi Goda,et al. Lattice rules in non-periodic subspaces of Sobolev spaces , 2019, Numerische Mathematik.
[26] Frances Y. Kuo,et al. Higher Order QMC Petrov-Galerkin Discretization for Affine Parametric Operator Equations with Random Field Inputs , 2014, SIAM J. Numer. Anal..
[27] E. Novak,et al. Tractability of Multivariate Problems , 2008 .
[28] Art B. Owen,et al. Super-polynomial accuracy of one dimensional randomized nets using the median-of-means , 2021, ArXiv.
[29] Takashi Goda,et al. Good interlaced polynomial lattice rules for numerical integration in weighted Walsh spaces , 2013, J. Comput. Appl. Math..
[30] F. J. Hickernell. Obtaining O( N - 2+∈ ) Convergence for Lattice Quadrature Rules , 2002 .
[31] G. Mullen,et al. Primitive polynomials over finite fields , 1992 .
[32] Josef Dick,et al. Walsh Spaces Containing Smooth Functions and Quasi-Monte Carlo Rules of Arbitrary High Order , 2008, SIAM J. Numer. Anal..
[33] Henryk Wozniakowski,et al. Good Lattice Rules in Weighted Korobov Spaces with General Weights , 2006, Numerische Mathematik.
[34] Pierre L'Ecuyer,et al. Randomized Polynomial Lattice Rules for Multivariate Integration and Simulation , 2001, SIAM J. Sci. Comput..
[35] Takashi Goda,et al. Quasi-Monte Carlo integration using digital nets with antithetics , 2015, J. Comput. Appl. Math..
[36] P. L’Ecuyer,et al. Randomized quasi-Monte Carlo: An introduction for practitioners , 2016 .
[37] James A. Nichols,et al. Fast CBC construction of randomly shifted lattice rules achieving O(n-1+δ) convergence for unbounded integrands over R5 in weighted spaces with POD weights , 2014, J. Complex..
[38] Josef Dick,et al. Construction of Interlaced Scrambled Polynomial Lattice Rules of Arbitrary High Order , 2013, Found. Comput. Math..
[39] Dirk Nuyens,et al. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..
[40] Josef Dick,et al. Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules , 2007, J. Complex..