Forecasting relativistic electron flux using dynamic multiple regression models

The forecast of high energy electron fluxes in the radiation belts is important because the exposure of modern spacecraft to high energy particles can result in significant damage to onboard systems. A comprehensive physical model of processes related to electron energisation that can be used for such a forecast has not yet been developed. In the present paper a systems identification approach is exploited to deduce a dynamic multiple regression model that can be used to predict the daily maximum of high energy electron fluxes at geosynchronous orbit from data. It is shown that the model developed provides reliable predictions.

[1]  Drew Turner,et al.  Quantitative forecast of relativistic electron flux at geosynchronous orbit based on low‐energy electron flux , 2008 .

[2]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[3]  Stephen A. Billings,et al.  Constructing an overall dynamical model for a system with changing design parameter properties , 2008, Int. J. Model. Identif. Control..

[4]  S. A. Billings,et al.  Experimental design and identifiability for non-linear systems , 1987 .

[5]  Daniel N. Baker,et al.  Linear prediction filter analysis of relativistic electron properties at 6.6 RE , 1990 .

[6]  Yoshizumi Miyoshi,et al.  Probabilistic space weather forecast of the relativistic electron flux enhancement at geosynchronous orbit , 2008 .

[7]  Stephen A. Billings,et al.  Model validation tests for multivariable nonlinear models including neural networks , 1995 .

[8]  S. A. Billings,et al.  An efficient nonlinear cardinal B-spline model for high tide forecasts at the Venice Lagoon , 2006 .

[9]  Takahiro Obara,et al.  Neural network prediction of relativistic electrons at geosynchronous orbit during the storm recovery phase: effects of recurring substorms , 2002 .

[10]  Stephen A. Billings,et al.  Improved model identification for non-linear systems using a random subsampling and multifold modelling (RSMM) approach , 2009, Int. J. Control.

[11]  Steve A. Billings,et al.  Term and variable selection for non-linear system identification , 2004 .

[12]  Stephen A. Billings,et al.  Sparse Model Identification Using a Forward Orthogonal Regression Algorithm Aided by Mutual Information , 2007, IEEE Transactions on Neural Networks.

[13]  Stephen A. Billings,et al.  An adaptive orthogonal search algorithm for model subset selection and non-linear system identification , 2008, Int. J. Control.

[14]  L. A. Aguirre,et al.  Validating Identified Nonlinear Models with Chaotic Dynamics , 1994 .

[15]  Stephen A. Billings,et al.  Wavelet based non-parametric NARX models for nonlinear input–output system identification , 2006, Int. J. Syst. Sci..

[16]  Daniel N. Baker,et al.  Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements , 2001 .

[17]  G. Reeves,et al.  Acceleration and loss of relativistic electrons during geomagnetic storms , 2003 .

[18]  C. Russell,et al.  An empirical relationship between interplanetary conditions and Dst , 1975 .

[19]  Sheng Chen,et al.  Identification of non-linear output-affine systems using an orthogonal least-squares algorithm , 1988 .

[20]  S. A. Billings,et al.  Identification of nonlinear processes in the magnetospheric dynamics and forecasting of Dst index , 2001 .

[21]  Harry C. Koons,et al.  A neural network model of the relativistic electron flux at geosynchronous orbit , 1991 .

[22]  L. A. Aguirre,et al.  Dynamical effects of overparametrization in nonlinear models , 1995 .

[23]  Daniel Coca,et al.  Data based quest for solar wind‐magnetosphere coupling function , 2010 .

[24]  A. Posner,et al.  Up to 1‐hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons , 2007 .

[25]  Stephen A. Billings,et al.  Generalized multiscale radial basis function networks , 2007, Neural Networks.

[26]  D. Baker,et al.  Adaptive linear prediction of radiation belt electrons using the Kalman filter , 2004 .

[27]  Stephen A. Billings,et al.  Model structure selection using an integrated forward orthogonal search algorithm assisted by squared correlation and mutual information , 2008, Int. J. Model. Identif. Control..

[28]  Brian J. Anderson,et al.  Data‐derived forecasting model for relativistic electron intensity at geosynchronous orbit , 2004 .

[29]  S. A. Billings,et al.  Forecasting the geomagnetic activity of the Dst index using multiscale radial basis function networks , 2007 .

[30]  Robert L. McPherron,et al.  Decay of the Dst field of geomagnetic disturbance after substorm onset and its implication to storm-substorm relation , 1996 .

[31]  Tsugunobu Nagai,et al.  “Space weather forecast”: Prediction of relativistic electron intensity at synchronous orbit , 1988 .

[32]  Sheng Chen,et al.  Identification of MIMO non-linear systems using a forward-regression orthogonal estimator , 1989 .

[33]  Non-linear prediction of relativistic electron flux in the outer belt , 2003 .

[34]  G. P. Ginet,et al.  A neural network–based geosynchronous relativistic electron flux forecasting model , 2010 .

[35]  V. I. Degtyarev,et al.  Prediction of maximal daily average values of relativistic electron fluxes in geostationary orbit during the magnetic storm recovery phase , 2009 .

[36]  S. Billings,et al.  Prediction of the Dst index using multiresolution wavelet models , 2004 .