Novel derivatives of nitro-substituted salicylic acids: Synthesis, antimicrobial activity and cytotoxicity.

[1]  Alimuddin Zumla,et al.  Totally drug‐resistant tuberculosis and adjunct therapies , 2015, Journal of internal medicine.

[2]  S. Bősze,et al.  Synthesis and in vitro biological evaluation of 2-(phenylcarbamoyl)phenyl 4-substituted benzoates. , 2015, Bioorganic & medicinal chemistry.

[3]  K. Vávrová,et al.  Tetrazole regioisomers in the development of nitro group-containing antitubercular agents , 2015 .

[4]  E. Benfenati,et al.  Comparison of in silico tools for evaluating rat oral acute toxicity† , 2015, SAR and QSAR in environmental research.

[5]  G. Poce,et al.  SAR analysis of new anti-TB drugs currently in pre-clinical and clinical development. , 2014, European journal of medicinal chemistry.

[6]  E. Novotná,et al.  Synthesis and biological activity of new salicylanilide N,N-disubstituted carbamates and thiocarbamates. , 2014, Bioorganic & medicinal chemistry.

[7]  T. Smutny,et al.  1-Substituted-5-[(3,5-dinitrobenzyl)sulfanyl]-1H-tetrazoles and their isosteric analogs: A new class of selective antitubercular agents active against drug-susceptible and multidrug-resistant mycobacteria. , 2014, European journal of medicinal chemistry.

[8]  M. Mirsaeidi,et al.  Management of nontuberculous mycobacterial infection in the elderly. , 2014, European journal of internal medicine.

[9]  E. Novotná,et al.  Salicylanilide pyrazinoates inhibit in vitro multidrug-resistant Mycobacterium tuberculosis strains, atypical mycobacteria and isocitrate lyase. , 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[10]  V. Buchta,et al.  Salicylanilide diethyl phosphates: synthesis, antimicrobial activity and cytotoxicity. , 2014, Bioorganic & medicinal chemistry.

[11]  J. Jampílek,et al.  New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. , 2013, Bioorganic & medicinal chemistry.

[12]  Alimuddin Zumla,et al.  Advances in the development of new tuberculosis drugs and treatment regimens , 2013, Nature Reviews Drug Discovery.

[13]  M. Krátký,et al.  Antimycobacterial Assessment of Salicylanilide Benzoates including Multidrug-Resistant Tuberculosis Strains , 2012, Molecules.

[14]  Jun O. Liu,et al.  Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. , 2012, Tuberculosis.

[15]  Patricia Ruiz,et al.  Prediction of Acute Mammalian Toxicity Using QSAR Methods: A Case Study of Sulfur Mustard and Its Breakdown Products , 2012, Molecules.

[16]  Yan Li,et al.  Synthesis and biological evaluation of N-aryl salicylamides with a hydroxamic acid moiety at 5-position as novel HDAC-EGFR dual inhibitors. , 2012, Bioorganic & medicinal chemistry.

[17]  D. van Soolingen,et al.  Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. , 2012, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[18]  D. Livermore,et al.  Fourteen years in resistance. , 2012, International journal of antimicrobial agents.

[19]  S. Cole,et al.  Benzothiazinones are suicide inhibitors of mycobacterial decaprenylphosphoryl-β-D-ribofuranose 2'-oxidase DprE1. , 2012, Journal of the American Chemical Society.

[20]  M. Krátký,et al.  Salicylanilide ester prodrugs as potential antimicrobial agents--a review. , 2011, Current pharmaceutical design.

[21]  A. Tai,et al.  Design and Synthesis of Novel Cyclooxygenase‐1 Inhibitors as Analgesics: 5‐Amino‐2‐ethoxy‐N‐(substituted‐phenyl)benzamides , 2011, ChemMedChem.

[22]  V. Buchta,et al.  New amino acid esters of salicylanilides active against MDR-TB and other microbes. , 2010, European journal of medicinal chemistry.

[23]  P. Draganov,et al.  Hepatotoxic effects of therapies for tuberculosis , 2010, Nature Reviews Gastroenterology &Hepatology.

[24]  Stewart T. Cole,et al.  High Content Screening Identifies Decaprenyl-Phosphoribose 2′ Epimerase as a Target for Intracellular Antimycobacterial Inhibitors , 2009, PLoS pathogens.

[25]  J. Férriz,et al.  Salicylanilide esters of N-protected amino acids as novel antimicrobial agents. , 2009, Bioorganic & medicinal chemistry letters.

[26]  A. J. van der Ven,et al.  Antituberculosis drug‐induced hepatotoxicity: Concise up‐to‐date review , 2008, Journal of gastroenterology and hepatology.

[27]  M. Matsumoto,et al.  OPC-67683, a Nitro-Dihydro-Imidazooxazole Derivative with Promising Action against Tuberculosis In Vitro and In Mice , 2006, PLoS medicine.

[28]  A. Verkman,et al.  Small molecules with antimicrobial activity against E. coli and P. aeruginosa identified by high‐throughput screening , 2006, British journal of pharmacology.

[29]  Robert C. Reynolds,et al.  Preclinical Testing of the Nitroimidazopyran PA-824 for Activity against Mycobacterium tuberculosis in a Series of In Vitro and In Vivo Models , 2005, Antimicrobial Agents and Chemotherapy.

[30]  J. Kuneš,et al.  Relationship between the Structure and Antimycobacterial Activity of Substituted Salicylanilides , 2003, Archiv der Pharmazie.

[31]  R. Kanojia,et al.  Substituted salicylanilides as inhibitors of two-component regulatory systems in bacteria. , 1998, Journal of medicinal chemistry.

[32]  Matthias Cavassini,et al.  [Infectious diseases]. , 2014, Revue medicale suisse.

[33]  A. Samuels,et al.  Structure-activity relationships of antitubercular salicylanilides consistent with disruption of the proton gradient via proton shuttling. , 2013, Bioorganic & medicinal chemistry.

[34]  G. Besra,et al.  University of Birmingham Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors , 2012 .