Wavelet analysis of conservative cascades

A conservative cascade is an iterative process that fragments a given set into smaller and smaller pieces according to a rule which preserves the total mass of the initial set at each stage of the construction almost surely and not just in expectation. Motivated by the importance of conservative cascades in analysing multifractal behaviour of measured Internet traffic traces, we consider waveletbased statistical techniques for inference about the cascade generator, the random mechanism determining the redistribution of the set's mass at each iteration. We provide two estimators of the structure function, one asymptotically biased and one not, and prove consistency and asymptotic normality in a range of values of the argument of the structure function less than a critical value. Simulation experiments illustrate the asymptotic properties of these estimators for values of the argument both below and above the critical value. Beyond the critical value, the estimators are shown not to be asymptotically consistent.

[1]  S. Resnick A Probability Path , 1999 .

[2]  Edward C. Waymire,et al.  Multifractal Dimensions and Scaling Exponents for Strongly Bounded Random Cascades , 1992 .

[3]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[4]  B. Mandelbrot Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier , 1974, Journal of Fluid Mechanics.

[5]  Edward C. Waymire,et al.  Statistical estimation for multiplicative cascades , 2000 .

[6]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[7]  R. Gomory,et al.  Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. Selecta Volume E , 1997 .

[8]  Estimation of Renyi exponents in random cascades , 1999 .

[9]  Hosam M. Mahmoud,et al.  Evolution of random search trees , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[10]  U. Frisch FULLY DEVELOPED TURBULENCE AND INTERMITTENCY , 1980 .

[11]  Edward C. Waymire,et al.  A statistical analysis of mesoscale rainfall as a random cascade , 1993 .

[12]  C. Meneveau,et al.  Simple multifractal cascade model for fully developed turbulence. , 1987, Physical review letters.

[13]  Rudolf H. Riedi,et al.  Multifractal Properties of TCP Traffic: a Numerical Study , 1997 .

[14]  J. Kahane,et al.  Sur certaines martingales de Benoit Mandelbrot , 1976 .

[15]  Quansheng Liu Sur certaines martingales de Mandelbrot , 1999 .

[16]  B. Mandelbrot Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .

[17]  Rudolf H. RiediRice Tcp Traac Is Multifractal: a Numerical Study , 1997 .

[18]  J. Kingman The First Birth Problem for an Age-dependent Branching Process , 1975 .

[19]  Michael Ghil,et al.  Turbulence and predictability in geophysical fluid dynamics and climate dynamics , 1985 .

[20]  Anja Feldmann,et al.  Scaling Analysis of Conservative Cascades, with Applications to Network Traffic , 1999, IEEE Trans. Inf. Theory.

[21]  Patrice Abry,et al.  Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.

[22]  Anja Feldmann,et al.  Data networks as cascades: investigating the multifractal nature of Internet WAN traffic , 1998, SIGCOMM '98.