Noncommutative tachyons and K-theory

We show that the relation between D-branes and noncommutative tachyons leads very naturally to the relation between D-branes and K-theory. We also discuss some relations between D-branes and K-homology, provide a noncommutative generalization of the ABS construction, and give a simple physical interpretation of Bott periodicity. In addition, a framework for constructing Neveu–Schwarz fivebranes as noncommutative solitons is proposed.

[1]  Y. Matsuo Topological Charges of Noncommutative Soliton , 2000, hep-th/0009002.

[2]  N. Seiberg A Note on Background Independence in Noncommutative Gauge Theories, Matrix Model and Tachyon Condensation , 2000, hep-th/0008013.

[3]  V. Periwal Deformation quantization as the origin of D-brane non-Abelian degrees of freedom , 2000, hep-th/0008046.

[4]  E. Witten Overview of K theory applied to strings , 2000, hep-th/0007175.

[5]  S. Wadia,et al.  Nielsen-Olesen vortices in noncommutative abelian Higgs model , 2000, hep-th/0007078.

[6]  V. Periwal D-brane charges and K-homology , 2000, hep-th/0006223.

[7]  E. Witten Noncommutative Tachyons And String Field Theory , 2000, hep-th/0006071.

[8]  Vishnu Jejjala,et al.  Marginal and relevant deformations of /N=4 field theories and non-commutative moduli spaces of vacua , 2000, hep-th/0005087.

[9]  J. Harvey,et al.  D-branes and strings as non-commutative solitons , 2000, hep-th/0005031.

[10]  K. Dasgupta,et al.  Noncommutative Tachyons , 2000, hep-th/0005006.

[11]  R. Gopakumar,et al.  Noncommutative Solitons , 2000, hep-th/0003160.

[12]  M. R. Garousi Tachyon couplings on non-BPS D-branes and Dirac-Born-Infeld action , 2000, hep-th/0003122.

[13]  M. Mihăilescu,et al.  Lumps and p-branes in open string field theory , 2000, hep-th/0003031.

[14]  A. Sen,et al.  Tachyon condensation in superstring field theory , 2000, hep-th/0002211.

[15]  J. Harvey,et al.  D-branes as unstable lumps in bosonic open string field theory , 2000, hep-th/0002117.

[16]  V. Mathai,et al.  D-branes, B fields and twisted K theory , 2000, hep-th/0002023.

[17]  A. Sen,et al.  Tachyon condensation in string field theory , 1999, hep-th/9912249.

[18]  M. Murray,et al.  BUNDLE GERBES APPLIED TO QUANTUM FIELD THEORY , 1997, hep-th/9711133.

[19]  A. U.S.,et al.  Level truncation and the tachyon in open bosonic string field theory , 2000 .

[20]  A. Kapustin D-branes in a topologically nontrivial B-field , 1999, hep-th/9909089.

[21]  N. Nekrasov,et al.  THE FRECKLED INSTANTONS , 1999 .

[22]  E. Witten,et al.  String theory and noncommutative geometry , 1999, hep-th/9908142.

[23]  I. Vancea On the algebraic K theory of the massive D8 and M9-branes , 1999, hep-th/9905034.

[24]  A. Sen Non-BPS States and Branes in String Theory , 1999 .

[25]  V. Schomerus D-branes and Deformation Quantization , 1999, hep-th/9903205.

[26]  M. Douglas,et al.  Two lectures on D-geometry and noncommutative geometry , 1999, hep-th/9901146.

[27]  Petr Hořava Type IIA D-branes, K theory, and matrix theory , 1998, hep-th/9812135.

[28]  Edward Witten D-Branes And K-Theory , 1998, hep-th/9810188.

[29]  M. Douglas,et al.  D-branes and matrix theory in curved space , 1997, hep-th/9707228.

[30]  Alain Connes,et al.  Noncommutative Geometry and Matrix Theory: Compactification on Tori , 1997, hep-th/9711162.

[31]  G. Moore,et al.  K-theory and Ramond-Ramond charge , 1997, hep-th/9710230.

[32]  M. Douglas,et al.  D-branes in curved space , 1997, hep-th/9703056.

[33]  M. Douglas,et al.  Five-branes in M(atrix) Theory , 1996, hep-th/9610236.

[34]  L. Susskind,et al.  M theory as a matrix model: A Conjecture , 1996, hep-th/9610043.

[35]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[36]  S. Shenker,et al.  Branes from matrices , 1996, hep-th/9612157.

[37]  M. Murray Bundle gerbes , 1994, dg-ga/9407015.

[38]  Jean-Luc Brylinski,et al.  Loop Spaces, Characteristic Classes and Geometric Quantization , 1994 .

[39]  C. Callan,et al.  Supersymmetric String Solitons , 1991 .

[40]  C. Callan,et al.  Worldsheet approach to heterotic instantons and solitons , 1991 .

[41]  V. Kostelecký,et al.  On a nonperturbative vacuum for the open bosonic string , 1990 .

[42]  George A. Elliott,et al.  K-theory , 1999 .

[43]  C. Callan,et al.  Open strings in background gauge fields , 1987 .

[44]  B. Blackadar,et al.  K-Theory for Operator Algebras , 1986 .

[45]  E. Fradkin,et al.  Non-linear electrodynamics from quantized strings , 1985 .

[46]  Joachim Cuntz,et al.  K-theory and C*-algebras , 1984 .

[47]  Loring W. Tu,et al.  Differential forms in algebraic topology , 1982, Graduate texts in mathematics.

[48]  R. Douglas C*-Algebra Extensions And K-Homology , 1980 .

[49]  L. B. D. Monvel On the index of Toeplitz operators of several complex variables , 1978 .

[50]  R. G. Douglas,et al.  Extensions of C*-algebras and K-homology , 1977 .

[51]  P. Fillmore Proceedings of a Conference on Operator Theory , 1973 .

[52]  P. Fillmore,et al.  Unitary equivalence modulo the compact operators and extensions of C*-algebras , 1973 .

[53]  M. Rieffel On the uniqueness of the Heisenberg commutation relations , 1972 .

[54]  M. Atiyah,et al.  Index theory for skew-adjoint fredholm operators , 1969 .

[55]  Klaus Jänich Vektorraumbündel und der Raum der Fredholm-Operatoren , 1965 .

[56]  N. Kuiper The homotopy type of the unitary group of Hilbert space , 1965 .

[57]  A. CLIFFORD MODULES , 1964 .

[58]  R. Smullyan ANNALS OF MATHEMATICS STUDIES , 1961 .