Ruminal microbiome-host crosstalk stimulates the development of the ruminal epithelium in a lamb model

[1]  Liwei Wang,et al.  Differential regulation of ion channels function by proteolysis. , 2018, Biochimica et biophysica acta. Molecular cell research.

[2]  E. Rosenberg,et al.  The hologenome concept of evolution after 10 years , 2018, Microbiome.

[3]  Georgios A. Pavlopoulos,et al.  Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection , 2018, Nature Biotechnology.

[4]  W. Zhu,et al.  Effect of starter diet supplementation on rumen epithelial morphology and expression of genes involved in cell proliferation and metabolism in pre-weaned lambs. , 2018, Animal : an international journal of animal bioscience.

[5]  Zhihe Zhang,et al.  Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose , 2018, The ISME Journal.

[6]  Liping Xie,et al.  MiR-22 suppresses epithelial–mesenchymal transition in bladder cancer by inhibiting Snail and MAPK1/Slug/vimentin feedback loop , 2018, Cell Death & Disease.

[7]  Weiyun Zhu,et al.  A High Grain Diet Dynamically Shifted the Composition of Mucosa-Associated Microbiota and Induced Mucosal Injuries in the Colon of Sheep , 2017, Front. Microbiol..

[8]  G. Suen,et al.  Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves , 2017, Front. Microbiol..

[9]  Rob Patro,et al.  Salmon provides fast and bias-aware quantification of transcript expression , 2017, Nature Methods.

[10]  Geet Duggal,et al.  Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference , 2017, Nature Methods.

[11]  W. Zhu,et al.  Starter feeding altered ruminal epithelial bacterial communities and some key immune-related genes' expression before weaning in lambs. , 2017, Journal of animal science.

[12]  T. Michałowski,et al.  Effect of Entodinium caudatum on starch intake and glycogen formation by Eudiplodinium maggii in the rumen and reticulum. , 2017, European journal of protistology.

[13]  L. Guan,et al.  Understanding host-microbial interactions in rumen: searching the best opportunity for microbiota manipulation , 2017, Journal of Animal Science and Biotechnology.

[14]  Weiyun Zhu,et al.  Characterization and comparison of the temporal dynamics of ruminal bacterial microbiota colonizing rice straw and alfalfa hay within ruminants. , 2016, Journal of dairy science.

[15]  E. Rubin,et al.  Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation , 2016, Microbiome.

[16]  Fei Li,et al.  Effects of early feeding on the host rumen transcriptome and bacterial diversity in lambs , 2016, Scientific Reports.

[17]  Jeffrey T Leek,et al.  Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown , 2016, Nature Protocols.

[18]  Amrutlal K. Patel,et al.  Analysis of Community Structure and Species Richness of Protozoa-Enriched Rumen Metagenome from Indian Surti by Shotgun Sequencing , 2016 .

[19]  Xin Hu,et al.  RETRACTED: Twist2 promotes kidney cancer cell proliferation and invasion via regulating ITGA6 and CD44 expression in the ECM-Receptor-Interaction pathway. , 2016, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[20]  B. White,et al.  Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants , 2016, The ISME Journal.

[21]  Xin Hu,et al.  Twist2 promotes kidney cancer cell proliferation and invasion by regulating ITGA6 and CD44 expression in the ECM-receptor interaction pathway , 2016, OncoTargets and therapy.

[22]  Weiyun Zhu,et al.  Microbiome-metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model. , 2016, Environmental microbiology.

[23]  K. Nelson,et al.  Erratum: Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp (The ISME Journal (2016) 10, 532; (DOI:10.1038/ismej.2015.252)) , 2016 .

[24]  K. Nelson,et al.  Temporal variation selects for diet–microbe co-metabolic traits in the gut of Gorilla spp , 2016, The ISME Journal.

[25]  J. Sage,et al.  Control of Proliferation and Cancer Growth by the Hippo Signaling Pathway , 2015, Molecular Cancer Research.

[26]  M. Majewska,et al.  The influence of supplementing heifer diets with Saccharomyces cerevisiae yeast on the activity of polysaccharidases in the rumen , 2015 .

[27]  Daiwen Chen,et al.  Responses in ileal and cecal bacteria to low and high amylose/amylopectin ratio diets in growing pigs , 2015, Applied Microbiology and Biotechnology.

[28]  K. Nelson,et al.  Temporal variation selects for diet–microbe co-metabolic traits in the gut of Gorilla spp , 2015, The ISME Journal.

[29]  R. Forster,et al.  In situ identification and quantification of starch-hydrolyzing bacteria attached to barley and corn grain in the rumen of cows fed barley-based diets. , 2015, FEMS microbiology ecology.

[30]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[31]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[32]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[33]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[34]  Robert C. Edgar,et al.  UPARSE: highly accurate OTU sequences from microbial amplicon reads , 2013, Nature Methods.

[35]  Fredrik H. Karlsson,et al.  Gut metagenome in European women with normal, impaired and diabetic glucose control , 2013, Nature.

[36]  C. Jeon,et al.  Characterization, metabolites and gas formation of fumarate reducing bacteria isolated from Korean native goat (Capra hircus coreanae) , 2012, Journal of Microbiology.

[37]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[38]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[39]  X. Gou,et al.  Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation , 2012, Autophagy.

[40]  D. Relman,et al.  The Application of Ecological Theory Toward an Understanding of the Human Microbiome , 2012, Science.

[41]  J. Nicholson,et al.  Therapeutic Modulation of Microbiota-Host Metabolic Interactions , 2012, Science Translational Medicine.

[42]  S. Salzberg,et al.  FLASH: fast length adjustment of short reads to improve genome assemblies , 2011, Bioinform..

[43]  M. Oba,et al.  Short communication: Effect of calf starter on rumen pH of Holstein dairy calves at weaning. , 2011, Journal of dairy science.

[44]  Eoin L. Brodie,et al.  Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows , 2011, The ISME Journal.

[45]  Chuan-Yun Li,et al.  KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases , 2011, Nucleic Acids Res..

[46]  F. Stumpff,et al.  Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH. , 2011, Journal of animal science.

[47]  Mark D. Johnson,et al.  SNAI2/Slug promotes growth and invasion in human gliomas , 2010, BMC Cancer.

[48]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[49]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[50]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[51]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[52]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[53]  C. Langford,et al.  Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes. , 2007, Genome research.

[54]  L. Cantley,et al.  Ras, PI(3)K and mTOR signalling controls tumour cell growth , 2006, Nature.

[55]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[56]  D. Haber,et al.  salvador Promotes Both Cell Cycle Exit and Apoptosis in Drosophila and Is Mutated in Human Cancer Cell Lines , 2002, Cell.

[57]  N. Abdullah,et al.  Mitsuokella jalaludinii sp. nov., from the rumens of cattle in Malaysia. , 2002, International journal of systematic and evolutionary microbiology.

[58]  N. Nomura,et al.  Characterization of a novel human cell-cycle-regulated homologue of Drosophila dlg1. , 2001, Genomics.

[59]  J. Russell,et al.  Factors That Alter Rumen Microbial Ecology , 2001, Science.

[60]  B. Jesse,et al.  Effect of volatile fatty acid infusion on development of the rumen epithelium in neonatal sheep. , 1997, Journal of dairy science.

[61]  S. Korsmeyer,et al.  Bad, a heterodimeric partner for Bcl-xL and Bcl-2, displaces bax and promotes cell death , 1995, Cell.

[62]  P. Chomczyński,et al.  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. , 1987, Analytical biochemistry.

[63]  R. Mackie,et al.  Changes in Lactate-Producing and Lactate-Utilizing Bacteria in Relation to pH in the Rumen of Sheep During Stepwise Adaptation to a High-Concentrate Diet , 1979, Applied and environmental microbiology.

[64]  E. Rosenberg,et al.  The Hologenome Concept , 2012 .

[65]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[66]  R. Žitňan,et al.  Development of rumen metabolism and ruminal epithelium in lambs. , 1993, Archiv fur Tierernahrung.