Viscous Dissipation and Heat Conduction in Binary Neutron-Star Mergers.

Inferring the properties of dense matter is one of the most exciting prospects from the measurement of gravitational waves from neutron star mergers. However, it requires reliable numerical simulations that incorporate viscous dissipation and energy transport as these can play a significant role in the survival time of the post-merger object. We calculate time scales for typical forms of dissipation and find that thermal transport and shear viscosity will not be important unless neutrino trapping occurs, which requires temperatures above 10 MeV and gradients over length scales of 0.1 km or less. On the other hand, if direct-Urca processes remain suppressed, leaving modified-Urca processes to establish flavor equilibrium, then bulk viscous dissipation could provide significant damping to density oscillations right after merger. When comparing with data from state-of-the-art merger simulations, we find that the bulk viscosity takes values close to its resonant maximum in a typical merger, motivating a more careful assessment of the role of bulk viscous dissipation in the gravitational-wave signal from merging neutron stars.

[1]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[2]  Lucy Rosenbloom arXiv , 2019, The Charleston Advisor.

[3]  J. Luscombe Relativistic hydrodynamics , 2018, Core Principles of Special and General Relativity.

[4]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[5]  R. Pietri,et al.  Spectral analysis of gravitational waves from binary neutron star merger remnants , 2017, 1707.03368.

[6]  L. Rezzolla,et al.  On the use of tracer particles in simulations of binary neutron stars , 2017, 1705.07882.

[7]  M. Shibata,et al.  Gravitational waves from remnant massive neutron stars of binary neutron star merger: Viscous hydrodynamics effects , 2017, 1705.06142.

[8]  T. Dietrich,et al.  Modeling dynamical ejecta from binary neutron star mergers and implications for electromagnetic counterparts , 2016, 1612.03665.

[9]  L. Roberts,et al.  Charged current neutrino interactions in hot and dense matter , 2016, 1612.02764.

[10]  A. Ohnishi,et al.  Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy , 2016, 1611.07133.

[11]  J. Font,et al.  Rotational properties of hypermassive neutron stars from binary mergers , 2016, 1611.07152.

[12]  V. Paschalidis General relativistic simulations of compact binary mergers as engines for short gamma-ray bursts , 2016, 1611.01519.

[13]  M. Alford,et al.  Gap-bridging enhancement of modified Urca processes in nuclear matter , 2016, 1610.08617.

[14]  L. Baiotti,et al.  Binary neutron star mergers: a review of Einstein’s richest laboratory , 2016, Reports on progress in physics. Physical Society.

[15]  C. Palenzuela,et al.  m =1 instability and gravitational wave signal in binary neutron star mergers , 2016, 1605.02369.

[16]  D. Reitze The Observation of Gravitational Waves from a Binary Black Hole Merger , 2016 .

[17]  Luciano Rezzolla,et al.  Gravitational-wave signal from binary neutron stars: A systematic analysis of the spectral properties , 2016, 1604.00246.

[18]  C. Ott,et al.  One-armed spiral instability in neutron star mergers and its detectability in gravitational waves , 2016, 1603.05726.

[19]  S. Shapiro,et al.  Relativistic Simulations of Eccentric Binary Neutron Star Mergers: One-arm Spiral Instability and Effects of Neutron Star Spin , 2015, 1511.01093.

[20]  P. Cerd'a-Dur'an,et al.  Efficient magnetic-field amplification due to the Kelvin-Helmholtz instability in binary neutron star mergers , 2015, 1509.09205.

[21]  D. Shoemaker,et al.  Observing gravitational waves from the post-merger phase of binary neutron star coalescence , 2015, 1509.08522.

[22]  S. Bernuzzi,et al.  Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers. , 2015, Physical review letters.

[23]  L. Baiotti,et al.  Spectral properties of the post-merger gravitational-wave signal from binary neutron stars , 2014, 1412.3240.

[24]  M. Alford,et al.  Phase conversion dissipation in multicomponent compact stars , 2014, 1404.5279.

[25]  Luca Baiotti,et al.  Constraining the Equation of State of Neutron Stars from Binary Mergers , 2014, Physical review letters.

[26]  T. Fischer,et al.  Symmetry energy impact in simulations of core-collapse supernovae , 2013, 1307.6190.

[27]  Kyoto,et al.  THE INFLUENCE OF THERMAL PRESSURE ON EQUILIBRIUM MODELS OF HYPERMASSIVE NEUTRON STAR MERGER REMNANTS , 2013, 1306.4034.

[28]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[29]  L. Tolos,et al.  Shear viscosity and the r-mode instability window in superfluid neutron stars , 2012, 1212.2075.

[30]  M. Alford,et al.  GRAVITATIONAL WAVE EMISSION AND SPIN-DOWN OF YOUNG PULSARS , 2012, 1210.6091.

[31]  Z. Etienne,et al.  Importance of cooling in triggering the collapse of hypermassive neutron stars , 2012, 1208.5487.

[32]  T. Fischer,et al.  CORE-COLLAPSE SUPERNOVA EQUATIONS OF STATE BASED ON NEUTRON STAR OBSERVATIONS , 2012, 1207.2184.

[33]  M. Alford,et al.  Bridging the gap by squeezing superfluid matter. , 2011, Physical review letters.

[34]  S. Bernuzzi,et al.  Accuracy of numerical relativity waveforms from binary neutron star mergers and their comparison with post-Newtonian waveforms , 2011, 1109.3611.

[35]  H. Janka,et al.  Measuring neutron-star properties via gravitational waves from neutron-star mergers. , 2011, Physical review letters.

[36]  M. Shibata,et al.  Gravitational waves and neutrino emission from the merger of binary neutron stars. , 2011, Physical review letters.

[37]  H. Janka,et al.  Gravitational waves and non-axisymmetric oscillation modes in mergers of compact object binaries , 2011, 1105.0368.

[38]  S. Ransom,et al.  A two-solar-mass neutron star measured using Shapiro delay , 2010, Nature.

[39]  S. Mahmoodifar,et al.  Large amplitude behavior of the bulk viscosity of dense matter , 2010, 1005.3769.

[40]  J. Schaffner-Bielich,et al.  A statistical model for a complete supernova equation of state , 2009, 0911.4073.

[41]  D. G. Yakovlev,et al.  Shear viscosity in neutron star cores , 2008, 0808.2018.

[42]  B. Giacomazzo,et al.  Accurate evolutions of inspiralling neutron-star binaries: Prompt and delayed collapse to a black hole , 2008, 0804.0594.

[43]  Z. Etienne,et al.  General relativistic simulations of magnetized binary neutron star mergers , 2008, 0803.4193.

[44]  C. Palenzuela,et al.  Simulating binary neutron stars: Dynamics and gravitational waves , 2007, 0708.2720.

[45]  P. S. Shternin,et al.  Electron-muon heat conduction in neutron star cores via the exchange of transverse plasmons , 2007, 0705.1963.

[46]  M. Miller,et al.  Constraints on the high-density nuclear equation of state from the phenomenology of compact stars and heavy-ion collisions , 2006, nucl-th/0602038.

[47]  B. Stephens,et al.  General relativistic hydrodynamics with viscosity: Contraction, catastrophic collapse, and disk formation in hypermassive neutron stars , 2004, astro-ph/0402502.

[48]  M. Shibata,et al.  Simulation of merging binary neutron stars in full general relativity: Γ=2 case , 1999, gr-qc/9911058.

[49]  V. Pandharipande,et al.  Equation of state of nucleon matter and neutron star structure , 1998, nucl-th/9804027.

[50]  J. Lattimer,et al.  Neutrino interactions in hot and dense matter , 1997, astro-ph/9710115.

[51]  L. Bildsten,et al.  Tidal interactions of inspiraling compact binaries , 1992 .

[52]  F. Swesty,et al.  A Generalized equation of state for hot, dense matter , 1991 .

[53]  Sawyer,et al.  Bulk viscosity of hot neutron-star matter and the maximum rotation rates of neutron stars. , 1989, Physical review. D, Particles and fields.

[54]  C. Pethick,et al.  Transport properties of degenerate neutrinos in dense matter , 1982 .

[55]  M. Schenkel,et al.  Charles University in Prague Faculty of Mathematics and Physics , 2013 .