Three layer difference method for linear pseudo-parabolic equation with delay

[1]  Gabil M. Amiraliyev,et al.  High-order finite difference technique for delay pseudo-parabolic equations , 2017, J. Comput. Appl. Math..

[2]  T. Sun A Godunov-Mixed Finite Element Method on Changing Meshes for the Nonlinear Sobolev Equations , 2012 .

[3]  E. Richard,et al.  TIME-STEPPING GALERKIN METHODS FOR NONLINEAR SOBOLEV PARTIAL DIFFERENTIAL EQUATIONS* , 1978 .

[4]  Nonlinear pseudoparabolic equations as singular limit of reaction–diffusion equations , 2006 .

[5]  Samuel M Rankin,et al.  A partial functional differential equation of Sobolev type , 1983 .

[6]  A. Bouziani Initial-boundary value problems for a class of pseudoparabolic equations with integral boundary conditions , 2004 .

[7]  Iuliu Sorin Pop,et al.  Uniqueness of weak solutions for a pseudo-parabolic equation modeling two phase flow in porous media , 2015, Appl. Math. Lett..

[8]  H. Roohani Ghehsareh,et al.  A super accurate shifted Tau method for numerical computation of the Sobolev-type differential equation with nonlocal boundary conditions , 2014, Appl. Math. Comput..

[9]  STABILITY INEQUALITIES FOR THE DELAY PSEUDO$-$PARABOLIC EQUATIONS , 2019, International Journal of Apllied Mathematics.

[10]  M. Çakir,et al.  Explicit Finite Difference Methods for the Delay Pseudoparabolic Equations , 2014, TheScientificWorldJournal.

[11]  Yadong Shang,et al.  Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms , 2016 .

[12]  Iuliu Sorin Pop,et al.  A class of pseudo‐parabolic equations: existence, uniqueness of weak solutions, and error estimates for the Euler‐implicit discretization , 2011 .

[13]  I. Amirali Analysis of higher order difference method for a pseudo-parabolic equation with delay , 2019, Miskolc Mathematical Notes.

[14]  G. M. Amiraliyev,et al.  ERROR ESTIMATES FOR DIFFERENTIAL DIFFERENCE SCHEMES TO PSEUDO-PARABOLIC INITIAL-BOUNDARY VALUE PROBLEM WITH DELAY , 2013 .

[15]  Josephus Hulshof,et al.  A model problem for groundwater flow with dynamic capillary pressure: stability of travelling waves , 2003 .

[16]  William H. Ford,et al.  Uniform Error Estimates for Difference Approximations to NonLinear Pseudo-Parabolic Partial Differential Equations , 1974 .

[17]  Min Yang,et al.  Analysis of second order finite volume element methods for pseudo-parabolic equations in three spatial dimensions , 2008, Appl. Math. Comput..

[18]  S. Nicaise,et al.  Fully discrete approximation of general nonlinear Sobolev equations , 2018, Afrika Matematika.

[19]  BEN SCHWEIZER,et al.  Two-phase flow equations with a dynamic capillary pressure , 2012, European Journal of Applied Mathematics.

[20]  Iuliu Sorin Pop,et al.  Travelling wave solutions for degenerate pseudo-parabolic equation modelling two-phase flow in porous media , 2013 .

[21]  Danping Yang,et al.  The Finite Difference Streamline Diffusion Methods for Sobolev Equations with Convection-Dominated Term , 2001, Appl. Math. Comput..

[22]  Gabil M. Amiraliyev,et al.  A parameter-uniform numerical method for a Sobolev problem with initial layer , 2007, Numerical Algorithms.

[23]  I. Pop,et al.  Degenerate two-phase porous media flow model with dynamic capillarity , 2016 .

[24]  Yun Fan,et al.  Equivalent formulations and numerical schemes for a class of pseudo-parabolic equations , 2013, J. Comput. Appl. Math..

[26]  Carlota M. Cuesta,et al.  Numerical schemes for a pseudo-parabolic Burgers equation : discontinuous data and long-time behaviour , 2009 .

[27]  Daniel De Kee,et al.  Mass transport through swelling membranes , 2005 .