Segmentation of Petri Plate Images for Automatic Reporting of Urine Culture Tests

[1]  Franco Scarselli,et al.  Multi-Modal Siamese Network for Diagnostically Similar Lesion Retrieval in Prostate MRI , 2020, IEEE Transactions on Medical Imaging.

[2]  Franco Scarselli,et al.  Image generation by GAN and style transfer for agar plate image segmentation , 2019, Comput. Methods Programs Biomed..

[3]  Franco Scarselli,et al.  Weak Supervision for Generating Pixel-Level Annotations in Scene Text Segmentation , 2019, Pattern Recognit. Lett..

[4]  Monica Bianchini,et al.  Fusion of Visual and Anamnestic Data for the Classification of Skin Lesions with Deep Learning , 2019, ICIAP Workshops.

[5]  Marco Maggini,et al.  COCO_TS Dataset: Pixel-level Annotations Based on Weak Supervision for Scene Text Segmentation , 2019, ICANN.

[6]  Douglas A. Reynolds,et al.  Gaussian Mixture Models , 2018, Encyclopedia of Biometrics.

[7]  Franco Scarselli,et al.  A Deep Learning Approach to Bacterial Colony Segmentation , 2018, ICANN.

[8]  Richard J. Chen,et al.  Unsupervised Reverse Domain Adaptation for Synthetic Medical Images via Adversarial Training , 2017, IEEE Transactions on Medical Imaging.

[9]  Sebastian Thrun,et al.  Dermatologist-level classification of skin cancer with deep neural networks , 2017, Nature.

[10]  Alessandro Mecocci,et al.  Extraction of High Level Visual Features for the Automatic Recognition of UTIs , 2016, WILF.

[11]  Zexuan Ji,et al.  A spatially constrained generative asymmetric Gaussian mixture model for image segmentation , 2016, J. Vis. Commun. Image Represent..

[12]  Vladlen Koltun,et al.  Playing for Data: Ground Truth from Computer Games , 2016, ECCV.

[13]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Andrea Garzelli,et al.  Automatic image classification for the urinoculture screening , 2016, Comput. Biol. Medicine.

[15]  Andrea Garzelli,et al.  ABLE: An Automated Bacterial Load Estimator for the Urinoculture Screening , 2016, ICPRAM.

[16]  Alessandro Mecocci,et al.  Automatic Image Analysis and Classification for Urinary Bacteria Infection Screening , 2015, ICIAP.

[17]  Johannes Gehrke,et al.  Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission , 2015, KDD.

[18]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[19]  Andrew Zisserman,et al.  Reading Text in the Wild with Convolutional Neural Networks , 2014, International Journal of Computer Vision.

[20]  Luc Van Gool,et al.  The Pascal Visual Object Classes Challenge: A Retrospective , 2014, International Journal of Computer Vision.

[21]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[22]  Krystian Mikolajczyk,et al.  Comparison of mid-level feature coding approaches and pooling strategies in visual concept detection , 2013, Comput. Vis. Image Underst..

[23]  Zhaoxia Fu,et al.  Color Image Segmentation Using Gaussian Mixture Model and EM Algorithm , 2012, MMSP 2012.

[24]  Quentin Geissmann,et al.  OpenCFU, a New Free and Open-Source Software to Count Cell Colonies and Other Circular Objects , 2012, PloS one.

[25]  Urs Brugger,et al.  Automated Counting of Bacterial Colony Forming Units on Agar Plates , 2012, PloS one.

[26]  J. Folch-Mallol,et al.  COVASIAM: an Image Analysis Method That Allows Detection of Confluent Microbial Colonies and Colonies of Various Sizes for Automated Counting , 1998, Applied and Environmental Microbiology.

[27]  A Pal,et al.  Bacterial colony counting using distance transform. , 1995, International journal of bio-medical computing.

[28]  H P MANSBERG,et al.  Automatic particle and bacterial colony counter. , 1957, Science.

[29]  Ning Xu,et al.  A State-of-the-Art Survey for Microorganism Image Segmentation Methods and Future Potential , 2019, IEEE Access.

[30]  Alberto Signoroni,et al.  Bacterial colony counting with Convolutional Neural Networks in Digital Microbiology Imaging , 2017, Pattern Recognit..

[31]  Dong Han,et al.  Adaptive Ideal Image Reconstruction for Bacteria Colony Detection , 2012 .