Decidable Approximations on Generalized and Parameterized Discrete Timed Automata

We consider generalized discrete timed automata with general linear relations over clocks and parameterized constants as clock constraints and with parameterized durations. We look at three approximation techniques (i.e., the r-reset-bounded approximation, the B-bounded approximation, and the 〈B, r〉-crossing-bounded approximation), and derive automata-theoretic characterizations of the binary reachability under these approximations. The characterizations allow us to show that the safety analysis problem is decidable for generalized discrete timed automata with unit durations and for deterministic generalized discrete timed automata with parameterized durations. An example specification written in ASTRAL is used to run a number of experiments using one of the approximation techniques.

[1]  Oscar H. Ibarra,et al.  Conter Machines: Decidable Properties and Applications to Verification Problems , 2000, MFCS.

[2]  Zhe Dang,et al.  On Presburger Liveness of Discrete Timed Automata , 2001, STACS.

[3]  Pierre-Yves Schobbens,et al.  State Clock Logic: A Decidable Real-Time Logic , 1997, HART.

[4]  Olgierd Wojtasiewicz,et al.  Elements of mathematical logic , 1964 .

[5]  Wang Yi,et al.  Uppaal in a nutshell , 1997, International Journal on Software Tools for Technology Transfer.

[6]  Zhe Dang,et al.  The design and analysis of real-time systems using the ASTRAL software development environment , 1999, Ann. Softw. Eng..

[7]  Thomas A. Henzinger,et al.  The benefits of relaxing punctuality , 1991, PODC '91.

[8]  Zhe Dang,et al.  A symbolic model checker for testing ASTRAL real-time specifications , 1999, Proceedings Sixth International Conference on Real-Time Computing Systems and Applications. RTCSA'99 (Cat. No.PR00306).

[9]  Thomas A. Henzinger,et al.  What Good Are Digital Clocks? , 1992, ICALP.

[10]  Thomas A. Henzinger,et al.  Parametric real-time reasoning , 1993, STOC.

[11]  Hubert Comon-Lundh,et al.  Timed Automata and the Theory of Real Numbers , 1999, CONCUR.

[12]  Thomas A. Henzinger,et al.  A really temporal logic , 1994, JACM.

[13]  Richard A. Kemmerer,et al.  A Formal Framework for ASTRAL Intralevel Proof Obligations , 1994, IEEE Trans. Software Eng..

[14]  Zhe Dang,et al.  Binary Reachability Analysis of Pushdown Timed Automata with Dense Clocks , 2001, CAV.

[15]  Farn Wang,et al.  Efficient Data Structure for Fully Symbolic Verification of Real-Time Software Systems , 2000, TACAS.

[16]  Rajeev Alur,et al.  Timed Automata , 1999, CAV.

[17]  Carlo Ghezzi,et al.  Specification of Realtime Systems Using ASTRAL , 1997, IEEE Trans. Software Eng..

[18]  William Pugh,et al.  The Omega test: A fast and practical integer programming algorithm for dependence analysis , 1991, Proceedings of the 1991 ACM/IEEE Conference on Supercomputing (Supercomputing '91).

[19]  Panos J. Antsaklis,et al.  Hybrid Systems II , 1994, Lecture Notes in Computer Science.

[20]  Thomas Wilke,et al.  Specifying Timed State Sequences in Powerful Decidable Logics and Timed Automata , 1994, FTRTFT.

[21]  Wang Yi,et al.  Efficient Timed Reachability Analysis using Clock Difference Diagrams , 1998 .

[22]  Thomas A. Henzinger,et al.  Symbolic Model Checking for Real-Time Systems , 1994, Inf. Comput..

[23]  Hubert Comon-Lundh,et al.  Multiple Counters Automata, Safety Analysis and Presburger Arithmetic , 1998, CAV.

[24]  William Pugh,et al.  A practical algorithm for exact array dependence analysis , 1992, CACM.

[25]  Oscar H. Ibarra,et al.  Binary Reachability Analysis of Discrete Pushdown Timed Automata , 2000, CAV.

[26]  Pierre Wolper,et al.  Symbolic Verification with Periodic Sets , 1994, CAV.

[27]  Thomas A. Henzinger,et al.  HYTECH: The Cornell HYbrid TECHnology Tool , 1994, Hybrid Systems.

[28]  Sergio Yovine,et al.  KRONOS: a verification tool for real-time systems , 1997, International Journal on Software Tools for Technology Transfer.

[29]  Tao Jiang,et al.  New Decidability Results Concerning Two-Way Counter Machines , 1995, SIAM J. Comput..

[30]  Paul Z. Kolano,et al.  Tools and techniques for the design and systematic analysis of real-time systems , 1999 .

[31]  Sergio Yovine,et al.  Model Checking Timed Automata , 1996, European Educational Forum: School on Embedded Systems.

[32]  Thomas A. Henzinger,et al.  Real-Time Logics: Complexity and Expressiveness , 1993, Inf. Comput..

[33]  Oscar H. Ibarra,et al.  Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.

[34]  Elliott Mendelson,et al.  Elements of mathematical logic , 1952 .

[35]  Nancy A. Lynch,et al.  The generalized railroad crossing: a case study in formal verification of real-time systems , 1994, 1994 Proceedings Real-Time Systems Symposium.

[36]  Zhe Dang,et al.  Three approximation techniques for ASTRAL symbolic model checking of infinite state real-time systems , 2000, Proceedings of the 2000 International Conference on Software Engineering. ICSE 2000 the New Millennium.

[37]  Rajeev Alur,et al.  Model-Checking in Dense Real-time , 1993, Inf. Comput..

[38]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[39]  Kim Guldstrand Larsen,et al.  From Timed Automata to Logic - and Back , 1995 .

[40]  Zhe Dang,et al.  Using the ASTRAL model checker to analyze Mobile IP , 1999, Proceedings of the 1999 International Conference on Software Engineering (IEEE Cat. No.99CB37002).