Crystal structure prediction is changing from basic science to applied technology.

Over the past three decades, the development of methods for Crystal Structure Prediction (CSP) has primarily been curiosity-driven. Because of the obvious potential for economic gain from CSP, commercial interests can be assumed to eventually take over as the main driving force of development. We argue that this transition is happening right now, not only for commercial CSP providers, but also for consumers within industry. In the context of industry-wide efforts, we describe the exploration in CSP research and algorithm development by one large pharmaceutical company, Eli Lilly and Company, and the impact that this has had on experimental solid form screening and selection. We expect that, once CSP is sufficiently reliable and automated, it will become a standard tool for analytical chemistry, on par with X-ray diffraction, calorimetry and spectroscopy.

[1]  Maxwell Hutchinson,et al.  VASP on a GPU: Application to exact-exchange calculations of the stability of elemental boron , 2012, Comput. Phys. Commun..

[2]  A. Kitaĭgorodskiĭ The principle of close packing and the condition of thermodynamic stability of organic crystals , 1965 .

[3]  B. Ensing,et al.  Energy barriers and mechanisms in solid–solid polymorphic transitions exhibiting cooperative motion , 2016 .

[4]  Claire S. Adjiman,et al.  Report on the sixth blind test of organic crystal structure prediction methods , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[5]  Edward O. Pyzer-Knapp,et al.  An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[6]  K. Chaudhuri Crystallisation within transdermal rotigotine patch: is there cause for concern? , 2008, Expert opinion on drug delivery.

[7]  Sereina Riniker,et al.  Better Informed Distance Geometry: Using What We Know To Improve Conformation Generation , 2015, J. Chem. Inf. Model..

[8]  F. Leusen Ab initio prediction of polymorphs , 1996 .

[9]  A. Tkatchenko,et al.  Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals. , 2013, The Journal of chemical physics.

[10]  Constantinos C. Pantelides,et al.  Ab initio crystal structure prediction—I. Rigid molecules , 2005, J. Comput. Chem..

[11]  C. Adjiman,et al.  Accurate and efficient representation of intramolecular energy in ab initio generation of crystal structures. I. Adaptive local approximate models , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[12]  G. Day,et al.  Atomistic calculations of phonon frequencies and thermodynamic quantities for crystals of rigid organic molecules , 2003 .

[13]  D. E. Williams,et al.  Nonbonded potentials for azahydrocarbons: the importance of the Coulombic interaction , 1984 .

[14]  Tejender S. Thakur,et al.  Significant progress in predicting the crystal structures of small organic molecules--a report on the fourth blind test. , 2009, Acta crystallographica. Section B, Structural science.

[15]  A. Gavezzotti,et al.  Crystal packing and lattice energies of polythienyls: calculations and predictions , 1991 .

[16]  A. Gavezzotti,et al.  Are Crystal Structures Predictable , 1994 .

[17]  Noel M. O'Boyle,et al.  De novo design of molecular wires with optimal properties for solar energy conversion , 2011, J. Cheminformatics.

[18]  J. Perdew,et al.  Benchmark tests of a strongly constrained semilocal functional with a long-range dispersion correction , 2016, 1605.06971.

[19]  S. Price,et al.  Isomorphous template induced crystallisation: a robust method for the targeted crystallisation of computationally predicted metastable polymorphs. , 2016, Chemical communications.

[20]  G. Day,et al.  De novo determination of the crystal structure of a large drug molecule by crystal structure prediction-based powder NMR crystallography. , 2013, Journal of the American Chemical Society.

[21]  Sarah L. Price,et al.  Can computed crystal energy landscapes help understand pharmaceutical solids? , 2016, Chemical communications.

[22]  Heinz W. Siesler,et al.  Theoretical derivation and practical application of energy/temperature diagrams as an instrument in preformulation studies of polymorphic drug substances. , 1996 .

[23]  Donald E. Williams,et al.  Improved intermolecular force field for molecules containing H, C, N, and O atoms, with application to nucleoside and peptide crystals , 2001, J. Comput. Chem..

[24]  Robert G. Bell,et al.  Simulating and predicting crystal structures , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[25]  D. Williams Direct calculations of crystalline thermal expansion and molecular reorientation from nonbonded interatomic potential anharmonicity and thermal amplitudes , 1972 .

[26]  J. Maddox Crystals from first principles , 1988, Nature.

[27]  David H. Case,et al.  Convergence Properties of Crystal Structure Prediction by Quasi-Random Sampling , 2015, Journal of chemical theory and computation.

[28]  D. Williams,et al.  A method of calculating molecular crystal structures , 1969 .

[29]  Sarah L Price,et al.  Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. , 2010, Physical chemistry chemical physics : PCCP.

[30]  Stephen Byrn,et al.  Pharmaceutical Solids: A Strategic Approach to Regulatory Considerations , 1995, Pharmaceutical Research.

[31]  Thomas L. Starr,et al.  Calculation of the crystal structures of hydrocarbons by molecular packing analysis , 1977, Comput. Chem..

[32]  C S Adjiman,et al.  Efficient Handling of Molecular Flexibility in Lattice Energy Minimization of Organic Crystals. , 2011, Journal of chemical theory and computation.

[33]  S. Grimme,et al.  Organic crystal polymorphism: a benchmark for dispersion-corrected mean-field electronic structure methods. , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[34]  Jan Kroon,et al.  Attempted prediction of the crystal structures of six monosaccharides , 1995 .

[35]  S. Chemburkar,et al.  Dealing with the Impact of Ritonavir Polymorphs on the Late Stages of Bulk Drug Process Development , 2000 .

[36]  Sarah L Price,et al.  The potential of computed crystal energy landscapes to aid solid-form development. , 2016, Drug discovery today.

[37]  G. Beran,et al.  How important is thermal expansion for predicting molecular crystal structures and thermochemistry at finite temperatures? , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  A. Gavezzotti,et al.  Polymorphic Forms of Organic Crystals at Room Conditions: Thermodynamic and Structural Implications , 1995 .

[40]  P Verwer,et al.  A test of crystal structure prediction of small organic molecules. , 2000, Acta crystallographica. Section B, Structural science.

[41]  Graeme M. Day,et al.  Which conformations make stable crystal structures? Mapping crystalline molecular geometries to the conformational energy landscape , 2014 .

[42]  R. Céolin,et al.  Rotigotine: Unexpected Polymorphism with Predictable Overall Monotropic Behavior. , 2015, Journal of pharmaceutical sciences.

[43]  James R. Holden,et al.  Prediction of possible crystal structures for C‐, H‐, N‐, O‐, and F‐containing organic compounds , 1993, J. Comput. Chem..

[44]  M. Alderton,et al.  Distributed multipole analysis Methods and applications , 1985 .

[45]  Many-body dispersion interactions in molecular crystal polymorphism. , 2012, Angewandte Chemie.

[46]  J. Guyot,et al.  Compression Behavior of Orthorhombic Paracetamol , 1998, Pharmaceutical Research.

[47]  A. Warshel,et al.  Consistent Force Field Calculations. II. Crystal Structures, Sublimation Energies, Molecular and Lattice Vibrations, Molecular Conformations, and Enthalpies of Alkanes , 1970 .

[48]  G. Day,et al.  Accurate force fields and methods for modelling organic molecular crystals at finite temperatures. , 2016, Physical chemistry chemical physics : PCCP.

[49]  S. Price Why don't we find more polymorphs? , 2013, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[50]  R. Gdanitz Prediction of molecular crystal structures by Monte Carlo simulated annealing without reference to diffraction data , 1992 .

[51]  Adrienn Ruzsinszky,et al.  Strongly Constrained and Appropriately Normed Semilocal Density Functional. , 2015, Physical review letters.

[52]  F. Leusen,et al.  The ab initio prediction of yet unknown molecular crystal structures by solving the crystal packing problem , 1994 .

[53]  James A. Chisholm,et al.  COMPACK: a program for identifying crystal structure similarity using distances , 2005 .

[54]  A. Dzyabchenko Theoretical structures of crystalline benzene: The search for a global minimum of the lattice energy in four space groups , 1984 .

[55]  C. Adjiman,et al.  Efficient Handling of Molecular Flexibility in Ab Initio Generation of Crystal Structures. , 2015, Journal of chemical theory and computation.

[56]  D. E. Williams,et al.  Ab initio molecular packing analysis , 1996 .

[57]  Sarah L. Price,et al.  Role of electrostatic interactions in determining the crystal structures of polar organic molecules. A distributed multipole study , 1996 .

[58]  S. Grimme,et al.  DFT-D3 Study of Some Molecular Crystals , 2014 .

[59]  Andrew I. Cooper,et al.  Functional materials discovery using energy–structure–function maps , 2017, Nature.

[60]  Claire S. Adjiman,et al.  Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test , 2011, Acta crystallographica. Section B, Structural science.

[61]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[62]  C. Adjiman,et al.  The polymorphs of ROY: application of a systematic crystal structure prediction technique. , 2012, Acta crystallographica. Section B, Structural science.

[63]  Carl J. Tilbury,et al.  Modeling Olanzapine Solution Growth Morphologies , 2017 .

[64]  J. Bernstein,et al.  Facts and fictions about polymorphism. , 2015, Chemical Society reviews.

[65]  G. Beran,et al.  Predicting finite-temperature properties of crystalline carbon dioxide from first principles with quantitative accuracy , 2015, Chemical science.

[66]  S. N. Nilsson Lill,et al.  Transferable force field for crystal structure predictions, investigation of performance and exploration of different rescoring strategies using DFT-D methods. , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[67]  Graeme M. Day,et al.  Current approaches to predicting molecular organic crystal structures , 2011 .

[68]  A. Kitaigorodsky,et al.  Prediction of the structure of an organic crystal , 1972 .

[69]  Bouke P. van Eijck,et al.  Ab initio crystal structure predictions for flexible hydrogen-bonded molecules. Part III. Effect of lattice vibrations , 2001, J. Comput. Chem..

[70]  C. Faerman,et al.  A revision of van der Waals atomic radii for molecular crystals: N, O, F, S, Cl, Se, Br and I bonded to carbon , 1985 .

[71]  G. Beran,et al.  A new era for ab initio molecular crystal lattice energy prediction. , 2014, Angewandte Chemie.

[72]  Donald E. Williams Crystal Packing of Molecules , 1965, Science.

[73]  Donald E. Williams Nonbonded Potential Parameters Derived from Crystalline Aromatic Hydrocarbons , 1966 .

[74]  Donald E. Williams Molecular packing analysis , 1972 .

[75]  S. Price,et al.  Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism. , 2009, Accounts of chemical research.

[76]  Sarah L. Price,et al.  SOME NEW IDEAS IN THE THEORY OF INTERMOLECULAR FORCES - ANISOTROPIC ATOM ATOM POTENTIALS , 1988 .

[77]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[78]  W. Mccrone,et al.  Pharmaceutical applications of polymorphism. , 1969, Journal of pharmaceutical sciences.

[79]  A. Hagler,et al.  The amide hydrogen bond and the anomalous packing of adipamide , 1978 .

[80]  Josh E. Campbell,et al.  Predicted energy–structure–function maps for the evaluation of small molecule organic semiconductors , 2017 .

[81]  S. Price,et al.  A strategy for producing predicted polymorphs: catemeric carbamazepine form V. , 2011, Chemical communications.

[82]  Axel Drefahl,et al.  CurlySMILES: a chemical language to customize and annotate encodings of molecular and nanodevice structures , 2011, J. Cheminformatics.

[83]  O. Grassmann,et al.  Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening , 2015, Nature Communications.

[84]  Donald E. Williams Improved intermolecular force field for crystalline oxohydrocarbons including OHO hydrogen bonding , 2001 .

[85]  G. Day,et al.  Static and lattice vibrational energy differences between polymorphs , 2015 .

[86]  Sarah L Price,et al.  A nonempirical anisotropic atom-atom model potential for chlorobenzene crystals. , 2003, Journal of the American Chemical Society.