Geometric Motion Design
暂无分享,去创建一个
[1] F. Park,et al. Bézier Curves on Riemannian Manifolds and Lie Groups with Kinematics Applications , 1995 .
[2] E. T. Y. Lee,et al. Computing a chain of blossoms, with application to products of splines , 1994, Comput. Aided Geom. Des..
[3] Helmut Pottmann,et al. Curve design with rational Pythagorean-hodograph curves , 1995, Adv. Comput. Math..
[4] I. J. Schoenberg,et al. On Pólya frequency functions IV: The fundamental spline functions and their limits , 1966 .
[5] Bahram Ravani,et al. Computational Geometry and Motion Approximation , 1993 .
[6] Dietrich Braess. Approximation by Spline Functions with Free Nodes , 1986 .
[7] Josef Hoschek,et al. Fundamentals of computer aided geometric design , 1996 .
[8] K. Mørken. Some identities for products and degree raising of splines , 1991 .
[9] Bert Jüttler. Rationale Bézierdarstellung räumlicher Bewegungsvorgänge und ihre Anwendung zur Beschreibung bewegter Objekte , 1994 .
[10] Ken Shoemake,et al. Animating rotation with quaternion curves , 1985, SIGGRAPH.
[11] Rida T. Farouki,et al. 1. Pythagorean - Hodograph Curves in Practical Use , 1992, Geometry Processing for Design and Manufacturing.
[12] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[13] Bahram Ravani,et al. Geometric Construction of Bézier Motions , 1994 .
[14] Helmut Pottmann,et al. Rational curves and surfaces with rational offsets , 1995, Comput. Aided Geom. Des..
[15] Rida T. Farouki,et al. The conformal map z -> z2 of the hodograph plane , 1994, Comput. Aided Geom. Des..
[16] John F. Hughes,et al. Smooth interpolation of orientations with angular velocity constraints using quaternions , 1992, SIGGRAPH.
[17] Michael G. Wagner. Planar rational B-spline motions , 1995, Comput. Aided Des..
[18] Bahram Ravani,et al. Computer aided geometric design of motion interpolants , 1994 .