Geometric Motion Design

We describe the use of rational B{spline motions for the solution of motion design problems. It is shown that such motions possess two kinds of control structures suitable for interactive design or geometry processing, respectively. A main advantage of the proposed technique over previous approaches is that it is built directly onto standard CAD algorithms and thus it inherits their advantages. As examples, we brieey examine interpolation problems and relations to rational curves and surfaces with rational oosets.

[1]  F. Park,et al.  Bézier Curves on Riemannian Manifolds and Lie Groups with Kinematics Applications , 1995 .

[2]  E. T. Y. Lee,et al.  Computing a chain of blossoms, with application to products of splines , 1994, Comput. Aided Geom. Des..

[3]  Helmut Pottmann,et al.  Curve design with rational Pythagorean-hodograph curves , 1995, Adv. Comput. Math..

[4]  I. J. Schoenberg,et al.  On Pólya frequency functions IV: The fundamental spline functions and their limits , 1966 .

[5]  Bahram Ravani,et al.  Computational Geometry and Motion Approximation , 1993 .

[6]  Dietrich Braess Approximation by Spline Functions with Free Nodes , 1986 .

[7]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[8]  K. Mørken Some identities for products and degree raising of splines , 1991 .

[9]  Bert Jüttler Rationale Bézierdarstellung räumlicher Bewegungsvorgänge und ihre Anwendung zur Beschreibung bewegter Objekte , 1994 .

[10]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[11]  Rida T. Farouki,et al.  1. Pythagorean - Hodograph Curves in Practical Use , 1992, Geometry Processing for Design and Manufacturing.

[12]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[13]  Bahram Ravani,et al.  Geometric Construction of Bézier Motions , 1994 .

[14]  Helmut Pottmann,et al.  Rational curves and surfaces with rational offsets , 1995, Comput. Aided Geom. Des..

[15]  Rida T. Farouki,et al.  The conformal map z -> z2 of the hodograph plane , 1994, Comput. Aided Geom. Des..

[16]  John F. Hughes,et al.  Smooth interpolation of orientations with angular velocity constraints using quaternions , 1992, SIGGRAPH.

[17]  Michael G. Wagner Planar rational B-spline motions , 1995, Comput. Aided Des..

[18]  Bahram Ravani,et al.  Computer aided geometric design of motion interpolants , 1994 .