An Intensional Schrödinger Logic

We investigate the higher-order modal logic SωI , which is a variant of the system Sω presented in our previous work. A semantics for that system, founded on the theory of quasi sets, is outlined. We show how such a semantics, motivated by the very intuitive base of Schrodinger logics, provides an alternative way to formalize some intensional concepts and features which have been used in recent discussions on the logical foundations of quantum mechanics; for example, that some terms like ‘electron’ have no precise reference and that ‘identical’ particles cannot be named unambiguously. In the last section, we sketch a classical semantics for quasi set theory.

[1]  Elena Castellani Interpreting bodies : classical and quantum objects in modern physics , 1998 .

[2]  Décio Krause,et al.  Schrödinger logics , 1994, Stud Logica.

[3]  Roberto Giuntini,et al.  Quasiset theories for microobjects: A comparison , 1998 .

[4]  G. Bergmann The Logic of Quanta , 1947 .

[5]  Paul Teller,et al.  Particle Labels and the Theory of Indistinguishable Particles in Quantum Mechanics , 1992, The British Journal for the Philosophy of Science.

[6]  Leslie Stevenson A formal theory of sortal quantification , 1975, Notre Dame J. Formal Log..

[7]  Gaisi Takeuti,et al.  Quantum Set Theory , 1981 .

[8]  Décio Krause,et al.  Vague Identity and Quantum Non-Individuality , 1995 .

[9]  Paul Teller,et al.  An Interpretive Introduction to Quantum Field Theory , 1994 .

[10]  S. French,et al.  Identity and individuality in classical and quantum physics , 1989 .

[11]  Décio Krause,et al.  The logic of quanta , 1999 .

[12]  Newton C. A. da Costa,et al.  Set-Theoretical Models for Quantum Systems , 1999 .

[13]  Robert Olkiewicz,et al.  The Schrödinger problem , 1994 .

[14]  G. D. Francia,et al.  IDENTITY QUESTIONS FROM QUANTUM THEORY , 1995 .

[15]  Daniel Gallin,et al.  Intensional and Higher-Order Modal Logic , 1975 .

[16]  Décio Krause,et al.  On a Quasi-Set Theory , 1992, Notre Dame J. Formal Log..

[17]  Rolando Chuaqui Review: Newton C. A. Da Costa, Ensaio Sobre os Fundamentos da Logica , 1991 .

[18]  F. Browder Mathematical developments arising from Hilbert problems , 1976 .

[19]  N. Costa,et al.  Some remarks on sortal logics and physics , 1996 .

[20]  Décio Krause Axioms for collections of indistinguishable objects , 1996 .

[21]  M RochaeSilva Science and humanism , 1967 .

[22]  Paul Teller,et al.  Particles, particle labels, and quanta: The toll of unacknowledged metaphysics , 1991 .

[23]  Kapuściński Wj,et al.  Science and Humanism , 1935, Nature.

[24]  M. L. Dalla Chiara,et al.  Individuals, Kinds and Names in Physics , 1993 .

[25]  Olivier Darrigol,et al.  Erwin Schrödinger : philosophy and the birth of quantum mechanics , 1992 .

[26]  Karl Svozil,et al.  Quantum Logic , 1998, Discrete mathematics and theoretical computer science.

[27]  M. Redhead,et al.  Quantum Physics and the Identity of Indiscernibles* , 1988, The British Journal for the Philosophy of Science.