The Gaia-ESO Survey : the selection function of the Milky Way field stars

The Gaia-ESO Survey was designed to target all major Galactic components (i.e. bulge, thin and thick discs, halo and clusters), with the goal of constraining the chemical and dynamical evolution of the Milky Way. This paper presents the methodology and considerations that drive the selection of the targeted, allocated and successfully observed Milky Way field stars. The detailed understanding of the survey construction, specifically the influence of target selection criteria on observed Milky Way field stars is required in order to analyse and interpret the survey data correctly. We present the target selection process for the Milky Way field stars observed with Very Large Telescope/Fibre Large Array Multi Element Spectrograph and provide the weights that characterize the survey target selection. The weights can be used to account for the selection effects in the Gaia-ESO Survey data for scientific studies. We provide a couple of simple examples to highlight the necessity of including such information in studies of the stellar populations in the Milky Way.

[1]  Joss Bland-Hawthorn,et al.  The Galaxy in Context: Structural, Kinematic, and Integrated Properties , 2016, 1602.07702.

[2]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: characterisation of the [α/Fe] sequences in the Milky Way discs , 2015, 1507.08066.

[3]  G. Carraro,et al.  The Gaia-ESO Survey: Insights into the inner-disc evolution from open clusters , 2015, 1505.04039.

[4]  Sergey E. Koposov,et al.  KINEMATICS AND CHEMISTRY OF RECENTLY DISCOVERED RETICULUM 2 AND HOROLOGIUM 1 DWARF GALAXIES , 2015, 1504.07916.

[5]  G. Carraro,et al.  The Gaia-ESO Survey: Detailed abundances in the metal-poor globular cluster NGC 4372 , 2015, 1504.03497.

[6]  G. Carraro,et al.  The Gaia-ESO Survey: a quiescent Milky Way with no significant dark/stellar accreted disc , 2015, 1504.02481.

[7]  U. Munari,et al.  The GALAH survey: scientific motivation , 2015, Monthly Notices of the Royal Astronomical Society.

[8]  G. Carraro,et al.  The Gaia-ESO Survey: CNO abundances in the open clusters Trumpler 20, NGC 4815, and NGC 6705 , 2014, 1411.2831.

[9]  A. Korn,et al.  The Gaia-ESO Survey: alpha-abundances of metal-poor stars , 2014, 1410.6415.

[10]  C. Prieto,et al.  The Gaia-ESO Survey: the most metal-poor stars in the Galactic bulge , 2014, 1409.7952.

[11]  D. A. García-Hernández,et al.  TRACING CHEMICAL EVOLUTION OVER THE EXTENT OF THE MILKY WAY'S DISK WITH APOGEE RED CLUMP STARS , 2014, 1409.3566.

[12]  C. Prieto,et al.  The Gaia-ESO Survey: the chemical structure of the Galactic discs from the first internal data release ?;?? , 2014, 1408.6687.

[13]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: the Galactic thick to thin disc transition , 2014, 1403.7568.

[14]  Sergey E. Koposov,et al.  The Gaia-ESO Survey : radial metallicity gradients and age-metallicity relation of stars in the Milky Way disk , 2014, 1401.4437.

[15]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Reevaluation of the parameters of the open cluster Trumpler 20 using photometry and spectroscopy , 2013, 1312.3925.

[16]  C. Francis Calibration of RAVE distances to a large sample of Hipparcos stars , 2013, 1309.1154.

[17]  S. Feltzing,et al.  Elemental abundances in the Milky Way stellar disk(s), bulge, and halo , 2013 .

[18]  Pascal Jagourel,et al.  MOONS: a multi-object optical and near-infrared spectrograph for the VLT , 2012, Other Conferences.

[19]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[20]  Heidi Jo Newberg,et al.  LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) — The survey's science plan , 2012, 1206.3578.

[21]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[22]  Chao Liu,et al.  Chemo-orbital evidence from SDSS/SEGUE G-type dwarf stars for a mixed origin of the Milky Way's thick disk , 2012, 1201.1635.

[23]  T. Beers,et al.  THE METALLICITY DISTRIBUTION FUNCTIONS OF SEGUE G AND K DWARFS: CONSTRAINTS FOR DISK CHEMICAL EVOLUTION AND FORMATION , 2011, 1112.2214.

[24]  H. Rix,et al.  THE SPATIAL STRUCTURE OF MONO-ABUNDANCE SUB-POPULATIONS OF THE MILKY WAY DISK , 2011, 1111.1724.

[25]  Judy Y. Cheng,et al.  METALLICITY GRADIENTS IN THE MILKY WAY DISK AS OBSERVED BY THE SEGUE SURVEY , 2011, 1110.5933.

[26]  M. Tamura,et al.  INTERSTELLAR EXTINCTION LAW TOWARD THE GALACTIC CENTER III: J, H, KS BANDS IN THE 2MASS AND THE MKO SYSTEMS, AND 3.6, 4.5, 5.8, 8.0 μm IN THE SPITZER/IRAC SYSTEM , 2009, 0902.3095.

[27]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[28]  Michael S. Bessell,et al.  SkyMapper and the Southern Sky Survey , 2008 .

[29]  A. P. Oates,et al.  SkyMapper and the Southern Sky Survey , 2007, astro-ph/0702511.

[30]  Hideki Takami,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2008 .

[31]  I. McLean,et al.  Ground-based and Airborne Instrumentation for Astronomy , 2006 .

[32]  U. Munari,et al.  The radial velocity experiment (RAVE): First data release , 2006 .

[33]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[34]  K. Freeman,et al.  The New Galaxy: Signatures of Its Formation , 2002, astro-ph/0208106.

[35]  M. G. Lattanzi,et al.  GAIA: Composition, formation and evolution of the Galaxy , 2001, astro-ph/0101235.

[36]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[37]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[38]  G. Rieke,et al.  The interstellar extinction law from 1 to 13 microns. , 1985 .