There exist Boolean functions on n (odd) variables having nonlinearity > 2n-1 - 2(n-1)/2 if and only if n>7

For the first time we find Boolean functions on 9 variables having nonlinearity 241, that remained as an open question in literature for almost three decades. Such functions are discovered using a suitably modified steepest-descent based iterative heuristic search in the class of rotation symmetric Boolean functions (RSBFs). This shows that there exist Boolean functions on n (odd) variables having nonlinearity > 2n−1 − 2 n−1 2 if and only if n > 7. Using the same search method, we also find several other important functions and we study the autocorrelation, propagation characteristics and resiliency of the RSBFs (using proper affine transformations, if required). The results show that it is possible to get balanced Boolean functions on n = 10 variables having autocorrelation spectra with maximum absolute value < 2 n 2 , which was not known earlier. In certain cases the functions can be affinely transformed to get first order propagation characteristics. We also obtain 10-variable functions having first order resiliency and nonlinearity 492 which was posed as an open question in Crypto 2000.

[1]  Palash Sarkar,et al.  New Constructions of Resilient and Correlation Immune Boolean Functions Achieving Upper Bound on Nonlinearity , 2001, Electron. Notes Discret. Math..

[2]  Subhamoy Maitra,et al.  Further constructions of resilient Boolean functions with very high nonlinearity , 2002, IEEE Trans. Inf. Theory.

[3]  Joos Vandewalle,et al.  Propagation Characteristics of Boolean Functions , 1991, EUROCRYPT.

[4]  Alexander Maximov,et al.  Classes of Plateaued Rotation Symmetric Boolean Functions under Transformation of Walsh Spectra , 2004, IACR Cryptol. ePrint Arch..

[5]  Subhamoy Maitra,et al.  Results on Algebraic Immunity for Cryptographically Significant Boolean Functions , 2004, INDOCRYPT.

[6]  J. Dillon Elementary Hadamard Difference Sets , 1974 .

[7]  Elwyn R. Berlekamp,et al.  Weight distributions of the cosets of the (32, 6) Reed-Muller code , 1972, IEEE Trans. Inf. Theory.

[8]  Subhamoy Maitra Highly Nonlinear Balanced Boolean Functions with Very Good Autocorrelation Property , 2001, Electron. Notes Discret. Math..

[9]  Palash Sarkar,et al.  Modifications of Patterson-Wiedemann functions for cryptographic applications , 2002, IEEE Trans. Inf. Theory.

[10]  John A. Clark,et al.  Almost Boolean Functions: The Design of Boolean Functions by Spectral Inversion , 2004, Comput. Intell..

[11]  William Millan,et al.  Boolean Function Design Using Hill Climbing Methods , 1999, ACISP.

[12]  Enes Pasalic,et al.  A construction of resilient functions with high nonlinearity , 2003, IEEE Trans. Inf. Theory.

[13]  Amr M. Youssef,et al.  On the existence of (9,3,5,240) resilient functions , 2006, IEEE Transactions on Information Theory.

[14]  Martin Hell,et al.  Plateaued Rotation Symmetric Boolean Functions on Odd Number of Variables , 2004, IACR Cryptol. ePrint Arch..

[15]  Yuliang Zheng,et al.  GAC - the Criterion for Global Avalance Characteristics of Cryptographic Functions , 1995, J. Univers. Comput. Sci..

[16]  Eric Filiol,et al.  Highly Nonlinear Balanced Boolean Functions with a Good Correlation-Immunity , 1998, EUROCRYPT.

[17]  Martin Hell,et al.  On Efficient Implementation of Search Strategy for RSBFs ∗ , 2006 .

[18]  Pantelimon Stanica,et al.  Rotation symmetric Boolean functions - Count and cryptographic properties , 2003, Discret. Appl. Math..

[19]  Pantelimon Stanica,et al.  A constructive count of rotation symmetric functions , 2003, Inf. Process. Lett..

[20]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[21]  William Millan,et al.  Heuristic Design of Cryptographically Strong Balanced Boolean Functions , 1998, EUROCRYPT.

[22]  Caroline Fontaine,et al.  On Some Cosets of the First-Order Reed-Muller Code with High Minimum Weight , 1999, IEEE Trans. Inf. Theory.

[23]  Palash Sarkar,et al.  Cryptographically significant Boolean functions with five valued Walsh spectra , 2002, Theor. Comput. Sci..

[24]  Enes Pasalic,et al.  Further Results on the Relation Between Nonlinearity and Resiliency for Boolean Functions , 1999, IMACC.

[25]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[26]  Susan Stepney,et al.  Evolving Boolean Functions Satisfying Multiple Criteria , 2002, INDOCRYPT.

[27]  John A. Clark,et al.  Results on Rotation Symmetric Bent and Correlation Immune Boolean Functions , 2004, FSE.

[28]  James L. Massey,et al.  A spectral characterization of correlation-immune combining functions , 1988, IEEE Trans. Inf. Theory.

[29]  John A. Clark,et al.  Two-Stage Optimisation in the Design of Boolean Functions , 2000, ACISP.

[30]  Josef Pieprzyk,et al.  Fast Hashing and Rotation-Symmetric Functions , 1999 .

[31]  William Millan,et al.  An effective genetic algorithm for finding highly nonlinear Boolean Functions , 1997, ICICS.

[32]  Johannes Mykkeltveit The covering radius of the (128, 8) Reed-Muller code is 56 (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[33]  Selçuk Kavut,et al.  Improved Cost Function in the Design of Boolean Functions Satisfying Multiple Criteria , 2003, INDOCRYPT.

[34]  O. S. Rothaus,et al.  On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.

[35]  Thomas W. CusickPantelimon Stùanicùa Fast Evaluation, Weights and Nonlinearity of Rotation-Symmetric Functions , 2000 .

[36]  Nicholas J. Patterson,et al.  The covering radius of the (215, 16) Reed-Muller code is at least 16276 , 1983, IEEE Trans. Inf. Theory.

[37]  Palash Sarkar,et al.  Nonlinearity Bounds and Constructions of Resilient Boolean Functions , 2000, CRYPTO.