How realistic UV spectra and X-rays suppress the abundance of direct collapse black holes

Observations of high-redshift quasars at z > 6 indicate that they harbour supermassive black holes (SMBHs) of a billion solar masses. The direct collapse scenario has emerged as the most plausible way to assemble SMBHs. The nurseries for the direct collapse black holes are massive primordial haloes illuminated with an intense UV flux emitted by Population II (Pop II) stars. In this study, we compute the critical value of such a flux (J_{21}^crit) for realistic spectra of Pop II stars through three-dimensional cosmological simulations. We derive the dependence of J_{21}^crit on the radiation spectra, on variations from halo to halo, and on the impact of X-ray ionization. Our findings show that the value of J_{21}^crit is a few times 104 and only weakly depends on the adopted radiation spectra in the range between Trad = 2 × 104and105 K. For three simulated haloes of a few times 107 M⊙, J_{21}^crit varies from 2 × 104 to 5 × 104. The impact of X-ray ionization is almost negligible and within the expected scatter of J_{21}^crit for background fluxes of JX, 21 ≤ 0.1. The computed estimates of J_{21}^crit have profound implications for the quasar abundance at z = 10 as it lowers the number density of black holes forming through an isothermal direct collapse by a few orders of magnitude below the observed black hole density. However, the sites with moderate amounts of H2 cooling may still form massive objects sufficient to be compatible with observations.

[1]  N. Tominaga,et al.  THE MASS SPECTRUM OF THE FIRST STARS , 2014, 1407.1374.

[2]  Z. Haiman,et al.  Direct collapse black hole formation from synchronized pairs of atomic cooling haloes , 2014, 1406.7020.

[3]  A. Ferrara,et al.  Initial mass function of intermediate-mass black hole seeds , 2014, 1406.6685.

[4]  Z. Haiman,et al.  Does disc fragmentation prevent the formation of supermassive stars in protogalaxies , 2014, 1406.5058.

[5]  S. Bovino,et al.  FORMATION OF CARBON-ENHANCED METAL-POOR STARS IN THE PRESENCE OF FAR-ULTRAVIOLET RADIATION , 2014, 1406.4450.

[6]  M. Colpi,et al.  Constraining the high-redshift formation of black hole seeds in nuclear star clusters with gas inflows , 2014, 1406.2325.

[7]  M. Spaans,et al.  THE FORMATION OF MASSIVE PRIMORDIAL STARS IN THE PRESENCE OF MODERATE UV BACKGROUNDS , 2014, 1406.1465.

[8]  A. Mesinger,et al.  Feedback-regulated supermassive black hole seed formation , 2014, 1405.6743.

[9]  M. Spaans,et al.  A UV flux constraint on the formation of direct collapse black holes , 2014, 1404.5773.

[10]  S. Khochfar,et al.  The First Billion Years project: birthplaces of direct collapse black holes , 2014, 1403.5267.

[11]  P. Madau,et al.  SUPER-CRITICAL GROWTH OF MASSIVE BLACK HOLES FROM STELLAR-MASS SEEDS , 2014, 1402.6995.

[12]  M. Milosavljevic,et al.  Formation of the first low-mass stars from cosmological initial conditions , 2014, 1401.0540.

[13]  P. Johansson,et al.  Numerical resolution effects on simulations of massive black hole seeds , 2013, 1312.4962.

[14]  J. Niemeyer,et al.  Impact of baryonic streaming velocities on the formation of supermassive black holes via direct collapse , 2013, 1311.5866.

[15]  F. Gianturco,et al.  KROME - a package to embed chemistry in astrophysical simulations , 2013, 1311.1070.

[16]  M. Milosavljevic,et al.  Radiative feedback from high-mass X-ray binaries on the formation of the first galaxies and early reionization , 2013, 1310.7944.

[17]  W. Schmidt,et al.  Magnetic fields during the formation of supermassive black holes , 2013, 1310.3680.

[18]  Queen Mary,et al.  DISCOVERY OF THREE z > 6.5 QUASARS IN THE VISTA KILO-DEGREE INFRARED GALAXY (VIKING) SURVEY , 2013, 1311.3666.

[19]  D. Schleicher,et al.  Star formation and accretion in the circumnuclear disks of active galaxies , 2013, 1309.4909.

[20]  W. Schmidt,et al.  The characteristic black hole mass resulting from direct collapse in the early Universe , 2013, 1309.1097.

[21]  G. Chiaki,et al.  ONE HUNDRED FIRST STARS: PROTOSTELLAR EVOLUTION AND THE FINAL MASSES , 2013, 1308.4456.

[22]  N. Yoshida,et al.  FORMATION OF PRIMORDIAL SUPERMASSIVE STARS BY RAPID MASS ACCRETION , 2013, 1308.4457.

[23]  R. C. Forrey Rate of three-body recombination of hydrogen molecules during primordial star formation , 2013, 1306.5163.

[24]  W. Schmidt,et al.  THE FORMATION OF MASSIVE POPULATION III STARS IN THE PRESENCE OF TURBULENCE , 2013, 1306.2745.

[25]  F. Palla,et al.  Massive black hole factories: Supermassive and quasi-star formation in primordial halos , 2013, 1305.5923.

[26]  S. Bovino,et al.  Impact of an accurate modelling of primordial chemistry in high-resolution studies , 2013, 1305.1480.

[27]  M. Spaans,et al.  The influence of magnetic fields, turbulence, and UV radiation on the formation of supermassive black holes , 2013, 1304.4057.

[28]  W. Schmidt,et al.  Black hole formation in the early Universe , 2013, 1304.0962.

[29]  R. Klessen,et al.  ON THE INITIAL MASS FUNCTION OF LOW-METALLICITY STARS: THE IMPORTANCE OF DUST COOLING , 2013 .

[30]  W. Schmidt,et al.  The small-scale dynamo and the amplification of magnetic fields in massive primordial haloes , 2012, 1212.1619.

[31]  W. Schmidt,et al.  High-resolution studies of massive primordial haloes , 2012, 1210.1802.

[32]  R. C. Forrey RATE OF FORMATION OF HYDROGEN MOLECULES BY THREE-BODY RECOMBINATION DURING PRIMORDIAL STAR FORMATION , 2013 .

[33]  M. Livio,et al.  Ubiquitous seeding of supermassive black holes by direct collapse , 2012, 1205.6464.

[34]  K. Inayoshi,et al.  Supermassive black hole formation by cold accretion shocks in the first galaxies , 2012, 1202.5380.

[35]  C. Tout,et al.  Quasi-stars, giants and the Schönberg-Chandrasekhar limit , 2012, 1201.5560.

[36]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[37]  S. Zaroubi,et al.  Lyman alpha emission from the first galaxies: Implications of UV backgrounds and the formation of molecules , 2011, 1106.3428.

[38]  Jemma Wolcott-Green Zolt'an Haiman Greg L. Bryan Photodissociation of H2 in protogalaxies: modelling self‐shielding in three‐dimensional simulations , 2011, 1106.3523.

[39]  K. Inayoshi,et al.  Effect of cosmic ray/X-ray ionization on supermassive black hole formation , 2011, 1106.2812.

[40]  F. Palla,et al.  VIBRATIONAL LEVEL POPULATION OF H2 AND H+2 IN THE EARLY UNIVERSE , 2011, 1103.3586.

[41]  M. Halpern,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP *) OBSERVATIONS: SKY MAPS, SYSTEMATIC ERRORS, AND BASIC RESULTS , 2011 .

[42]  M. Norman,et al.  yt: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA , 2010, 1011.3514.

[43]  S. Zaroubi,et al.  The impact of Lyman α trapping on the formation of primordial objects , 2010 .

[44]  K. A. Miller,et al.  Experimental Results for H2 Formation from H− and H and Implications for First Star Formation , 2010, Science.

[45]  Z. Haiman,et al.  SUPERMASSIVE BLACK HOLE FORMATION AT HIGH REDSHIFTS THROUGH A PRIMORDIAL MAGNETIC FIELD , 2010, 1005.2942.

[46]  S. Glover,et al.  BLACK HOLE FORMATION IN PRIMORDIAL GALAXIES: CHEMICAL AND RADIATIVE CONDITIONS , 2010, 1002.2850.

[47]  R. C. Forrey,et al.  RESONANT H− PHOTODETACHMENT: ENHANCED PHOTODESTRUCTION AND CONSEQUENCES FOR RADIATIVE FEEDBACK , 2010 .

[48]  B. Ciardi,et al.  Lyα versus X-ray heating in the high-z intergalactic medium , 2010 .

[49]  R. McLure,et al.  THE CANADA–FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6 , 2009, 0912.0281.

[50]  S. Furlanetto,et al.  Secondary ionization and heating by fast electrons , 2009, 0910.4410.

[51]  Z. Haiman,et al.  Supermassive black hole formation by direct collapse: keeping protogalactic gas H2 free in dark matter haloes with virial temperatures Tvir > rsim 104 K , 2009, 0906.4773.

[52]  M. Begelman Evolution of supermassive stars as a pathway to black hole formation , 2009, 0910.4398.

[53]  T. D. Matteo,et al.  Lyalpha versus X-ray heating in the high-z IGM , 2009, 0910.1547.

[54]  S. Cazaux,et al.  HD and H-2 formation in low-metallicity dusty gas clouds at high redshift , 2009, 0901.0514.

[55]  Bernadetta Devecchi,et al.  FORMATION OF THE FIRST NUCLEAR CLUSTERS AND MASSIVE BLACK HOLES AT HIGH REDSHIFT , 2008, 0810.1057.

[56]  Z. Haiman,et al.  THE ASSEMBLY OF SUPERMASSIVE BLACK HOLES AT HIGH REDSHIFTS , 2008, 0807.4702.

[57]  Z. Haiman,et al.  Fluctuations in the high-redshift Lyman–Werner background: close halo pairs as the origin of supermassive black holes , 2008, 0810.0014.

[58]  M. Haehnelt,et al.  The formation of compact massive self-gravitating discs in metal-free haloes with virial temperatures of ∼13 000–30 000 K , 2008, 0810.0024.

[59]  Z. Haiman,et al.  Can Supermassive Black Holes Form in Metal-enriched High-Redshift Protogalaxies? , 2008, 0804.3141.

[60]  T. Abel,et al.  Uncertainties in H2 and HD chemistry and cooling and their role in early structure formation , 2008, 0803.1768.

[61]  A. Ferrara,et al.  The energy cascade from warm dark matter decays , 2008, 0803.0370.

[62]  T. Abel,et al.  Resolving the Formation of Protogalaxies. II. Central Gravitational Collapse , 2007, 0710.1678.

[63]  T. Abel,et al.  ACCRETION ONTO THE FIRST STELLAR-MASS BLACK HOLES , 2007, 0811.0820.

[64]  M. Capitelli,et al.  An evaluation of the effect of the dissociative attachment of vibrationally excited H2 on primordial universe chemistry (Research Note) , 2007 .

[65]  S. Glover,et al.  Star Formation at Very Low Metallicity. I. Chemistry and Cooling at Low Densities , 2007, 0705.0182.

[66]  Jarrett L. Johnson,et al.  The aftermath of the first stars: massive black holes , 2006, astro-ph/0605691.

[67]  M. Volonteri,et al.  Unresolved X-ray background: clues on galactic nuclear activity at z > 6 , 2006, astro-ph/0610329.

[68]  Cambridge,et al.  Supermassive black hole formation during the assembly of pre-galactic discs , 2006, astro-ph/0606159.

[69]  N. Yoshida,et al.  Formation of Primordial Stars in a ΛCDM Universe , 2006, astro-ph/0606106.

[70]  M. Rees,et al.  Formation of supermassive black holes by direct collapse in pre-galactic haloes , 2006, astro-ph/0602363.

[71]  J. Silk,et al.  Pregalactic Black Hole Formation with an Atomic Hydrogen Equation of State , 2006, astro-ph/0601714.

[72]  M. Markevitch,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 ABSOLUTE MEASUREMENT OF THE UNRESOLVED COSMIC X-RAY BACKGROUND IN THE 0.5–8 KEV BAND WITH CHANDRA , 2006 .

[73]  P. Madau,et al.  The first miniquasar , 2005, astro-ph/0506712.

[74]  K. Omukai,et al.  Thermal and Fragmentation Properties of Star-forming Clouds in Low-Metallicity Environments , 2005, astro-ph/0503010.

[75]  R. Meijerink,et al.  Diagnostics of irradiated gas in galaxy nuclei. I. A far-ultraviolet and X-ray dominated region code , 2005, astro-ph/0502454.

[76]  J. Brinkmann,et al.  A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. IV. Discovery of Seven Additional Quasars , 2004, astro-ph/0405138.

[77]  Z. Haiman,et al.  Rate Coefficient for H+ + H2(X1Σg+, ν = 0, J = 0) → H(1s) + H2+ Charge Transfer and Some Cosmological Implications , 2004, astro-ph/0404288.

[78]  Z. Haiman Constraints from Gravitational Recoil on the Growth of Supermassive Black Holes at High Redshift , 2004, astro-ph/0404196.

[79]  J. Ostriker,et al.  X-ray pre-ionization powered by accretion on the first black holes – I. A model for the WMAP polarization measurement , 2003, astro-ph/0311003.

[80]  V. Narayanan,et al.  A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at z > 6 , 2003, astro-ph/0301135.

[81]  A. Loeb,et al.  Formation of the First Supermassive Black Holes , 2002, astro-ph/0212400.

[82]  D. Schaerer The transition from Population III to normal galaxies: Lyα and He II emission and the ionising properties of high redshift starburst galaxies , 2002, astro-ph/0210462.

[83]  Institute for Astronomy,et al.  Radiative feedback from an early X-ray background , 2002, astro-ph/0205308.

[84]  J. Shull,et al.  The Fate of the First Galaxies. I. Self-consistent Cosmological Simulations with Radiative Transfer , 2001, astro-ph/0110431.

[85]  K. Omukai Primordial Star Formation under Far-Ultraviolet Radiation , 2000, astro-ph/0011446.

[86]  K. Omukai Protostellar Collapse with Various Metallicities , 2000, astro-ph/0003212.

[87]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[88]  M. Rees,et al.  Destruction of Molecular Hydrogen during Cosmological Reionization , 1996, astro-ph/9608130.

[89]  M. Norman,et al.  Modeling primordial gas in numerical cosmology , 1996, astro-ph/9608040.

[90]  D. H. Schwarz,et al.  Master Equation Studies of the Collisional Excitation and Dissociation of H 2 Molecules by H Atoms , 1996 .

[91]  D. A. Verner,et al.  Atomic data for astrophysics. II. New analytic fits for photoionization cross sections of atoms and ions , 1996 .

[92]  G. Ferland,et al.  Atomic data for astrophysics. I. Radiative recombination rates for H-like, He-like, Li-like, and Na-like ions over a broad range of temperature , 1995, astro-ph/9509083.

[93]  A. Tielens,et al.  The neutral atomic phases of the interstellar medium , 1995 .

[94]  Bradley M. Peterson,et al.  ANISOTROPIC LINE EMISSION AND THE GEOMETRY OF THE BROAD-LINE REGION IN ACTIVE GALACTIC NUCLEI , 1992 .

[95]  R. Cen A hydrodynamic approach to cosmology - Methodology , 1992 .

[96]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[97]  W. Langer,et al.  Elementary processes in hydrogen-helium plasmas : cross sections and reaction rate coefficients , 1987 .

[98]  J. Shull,et al.  X-ray secondary heating and ionization in quasar emission-line clouds , 1985 .

[99]  P. Shapiro,et al.  Hydrogen Molecules and the Radiative Cooling of Pregalactic Shocks II: Low Velocity Shocks at High Redshift , 1985 .

[100]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[101]  G. F. Mitchell,et al.  Effects of a shock on the molecular composition of a diffuse interstellar cloud , 1983 .

[102]  A. W. Wishart The bound-free photo-detachment cross-section of H- , 1979 .

[103]  V. Anicich,et al.  An ion cyclotron resonance study of reactions of ions with hydrogen atomsa) , 1979 .

[104]  W. Claeys,et al.  H2+ formation in low energy H+-H- collisions , 1978 .

[105]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae , 1976 .

[106]  G. Dunn Photodissociation of H+2 and D+2: Theory , 1968 .

[107]  S. Corrigan Dissociation of Molecular Hydrogen by Electron Impact , 1965 .