Dimension Reduction Methods for Convolution Modular Lattices

We describe a dimension reduction method for convolution modular lattices. Its effectiveness and implications for parallel and distributed computing are analyzed.

[1]  Oded Goldreich,et al.  Public-Key Cryptosystems from Lattice Reduction Problems , 1996, CRYPTO.

[2]  Claus-Peter Schnorr,et al.  Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems , 1991, FCT.

[3]  C. P. Schnorr,et al.  A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms , 1987, Theor. Comput. Sci..

[4]  Ravi Kumar,et al.  A sieve algorithm for the shortest lattice vector problem , 2001, STOC '01.

[5]  Jean-Pierre Seifert,et al.  Approximating Shortest Lattice Vectors is Not Harder Than Approximating Closest Lattice Vectors , 1999, Electron. Colloquium Comput. Complex..

[6]  Miklós Ajtai,et al.  The shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract) , 1998, STOC '98.

[7]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[8]  J. Hoffstein,et al.  The NTRU Signature Scheme : Theory and Practice , 2001 .

[9]  O. Goldreich Public-key cryptography from lattice reduction problems , 1997, CRYPTO 1997.

[10]  Phong Q. Nguyen Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto '97 , 1999, CRYPTO.

[11]  Daniele Micciancio,et al.  The shortest vector in a lattice is hard to approximate to within some constant , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[12]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[13]  Claus-Peter Schnorr,et al.  Segment LLL-Reduction of Lattice Bases , 2001, CaLC.

[14]  Claus-Peter Schnorr,et al.  Segment LLL-Reduction with Floating Point Orthogonalization , 2001, CaLC.

[15]  Joseph H. Silverman,et al.  NSS: An NTRU Lattice-Based Signature Scheme , 2001, EUROCRYPT.

[16]  M. Ajtai The shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract) , 1998, STOC '98.

[17]  Joseph H. Silverman,et al.  NTRU: A Ring-Based Public Key Cryptosystem , 1998, ANTS.

[18]  Claus-Peter Schnorr,et al.  Lattice basis reduction: Improved practical algorithms and solving subset sum problems , 1991, FCT.