A Third-Order Semidiscrete Central Scheme for Conservation Laws and Convection-Diffusion Equations

We present a new third-order, semidiscrete, central method for approximating solutions to multidimensional systems of hyperbolic conservation laws, convection-diffusion equations, and related problems. Our method is a high-order extension of the recently proposed second-order, semidiscrete method in [A. Kurgonov and E. Tadmor, J. Comput Phys., 160 (2000) pp. 241--282]. The method is derived independently of the specific piecewise polynomial reconstruction which is based on the previously computed cell-averages. We demonstrate our results by focusing on the new third-order central weighted essentially nonoscillatory (CWENO) reconstruction presented in [D. Levy, G. Puppo, and G. Russo, SIAM J. Sci. Comput., 21 (1999), pp. 294--322]. The numerical results we present show the desired accuracy, high resolution, and robustness of our method.

[1]  Stanley Osher,et al.  Convex ENO High Order Multi-dimensional Schemes without Field by Field Decomposition or Staggered Grids , 1998 .

[2]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[3]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[4]  E. Tadmor,et al.  A fast, high resolution, second-order central scheme for incompressible flows. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[6]  Gabriella Puppo,et al.  A third order central WENO scheme for 2D conservation laws , 2000 .

[7]  A. Medovikov High order explicit methods for parabolic equations , 1998 .

[8]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[9]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[10]  Alexander Kurganov,et al.  Effects of a Saturating Dissipation in Burgers-Type Equations , 1997 .

[11]  R. LeVeque Approximate Riemann Solvers , 1992 .

[12]  A. Harten,et al.  The artificial compression method for computation of shocks and contact discontinuities: III. Self , 1978 .

[13]  Chi-Wang Shu Numerical experiments on the accuracy of ENO and modified ENO schemes , 1990 .

[14]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[15]  P. Arminjon,et al.  Généralisation du schéma de Nessyahu-Tadmor pour une équation hyperbolique à deux dimensions d'espace , 1995 .

[16]  Eitan Tadmor,et al.  Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..

[17]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[18]  Doron Levy,et al.  On Burgers-Type Equations with Nonmonotonic Dissipative Fluxes , 1998 .

[19]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[20]  Gabriella Puppo,et al.  On the behavior of the total variation in CWENO methods for conservation laws , 2000 .

[21]  G. Russo,et al.  Central WENO schemes for hyperbolic systems of conservation laws , 1999 .

[22]  P. Lax,et al.  Systems of conservation equations with a convex extension. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Gabriella Puppo,et al.  High-Order Central Schemes for Hyperbolic Systems of Conservation Laws , 1999, SIAM J. Sci. Comput..

[24]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[25]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[26]  E. Tadmor,et al.  Third order nonoscillatory central scheme for hyperbolic conservation laws , 1998 .

[27]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[28]  Eitan Tadmor,et al.  Non-Oscillatory Central Schemes for the Incompressible 2-D Euler Equations , 1997 .

[29]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[30]  Stanley Osher,et al.  Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I , 1996 .

[31]  S. Osher,et al.  High-Resolution Nonoscillatory Central Schemes with Nonstaggered Grids for Hyperbolic Conservation Laws , 1998 .

[32]  E. Tadmor Approximate solutions of nonlinear conservation laws , 1998 .

[33]  S. Osher,et al.  Regular ArticleUniformly High Order Accurate Essentially Non-oscillatory Schemes, III , 1997 .

[34]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[35]  Gabriella Puppo,et al.  Compact Central WENO Schemes for Multidimensional Conservation Laws , 1999, SIAM J. Sci. Comput..

[36]  A. Harten,et al.  The artificial compression method for computation of shocks and contact discontinuities. 3: Self-adjusting hybrid schemes , 1977 .