Ramsay-curve item response theory (RC-IRT) to detect and correct for nonnormal latent variables.

Popular methods for fitting unidimensional item response theory (IRT) models to data assume that the latent variable is normally distributed in the population of respondents, but this can be unreasonable for some variables. Ramsay-curve IRT (RC-IRT) was developed to detect and correct for this nonnormality. The primary aims of this article are to introduce RC-IRT less technically than it has been described elsewhere; to evaluate RC-IRT for ordinal data via simulation, including new approaches for model selection; and to illustrate RC-IRT with empirical examples. The empirical examples demonstrate the utility of RC-IRT for real data, and the simulation study indicates that when the latent distribution is skewed, RC-IRT results can be more accurate than those based on the normal model. Along with a plot of candidate curves, the Hannan-Quinn criterion is recommended for model selection.

[1]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[2]  R. Jennrich,et al.  Standard errors for EM estimation , 2000 .

[3]  B. Silverman,et al.  On the Estimation of a Probability Density Function by the Maximum Penalized Likelihood Method , 1982 .

[4]  Klaas Sijtsma,et al.  Introduction to Nonparametric Item Response Theory , 2002 .

[5]  James O. Ramsay,et al.  A Functional Approach to Modeling Test Data , 1997 .

[6]  Robert J. Mislevy,et al.  BILOG 3 : item analysis and test scoring with binary logistic models , 1990 .

[7]  William Stout,et al.  A New Item Response Theory Modeling Approach with Applications to Unidimensionality Assessment and Ability Estimation , 1990 .

[8]  R. Darrell Bock,et al.  Fitting a response model forn dichotomously scored items , 1970 .

[9]  R. Mislevy Estimating latent distributions , 1984 .

[10]  David Thissen,et al.  Uses of Item Response Theory and the Testlet Concept in the Measurement of Psychopathology , 1996 .

[11]  L. Cronbach Coefficient alpha and the internal structure of tests , 1951 .

[12]  Efficient nonparametric approaches for estimating the operating characteristics of discrete item responses , 1998 .

[13]  M. R. Novick,et al.  Statistical Theories of Mental Test Scores. , 1971 .

[14]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[15]  Istituto italiano degli attuari Giornale dell'Istituto italiano degli attuari , 1930 .

[16]  Marie Davidian,et al.  The Nonlinear Mixed Effects Model with a Smooth Random Effects Density , 1993 .

[17]  Edwin J. C. G. van den Oord,et al.  Estimating Johnson Curve Population Distributions in MULTILOG , 2005 .

[18]  R. Rapee,et al.  More information from fewer questions: the factor structure and item properties of the original and brief fear of negative evaluation scale. , 2004, Psychological assessment.

[19]  David Thissen,et al.  Item Response Theory with Estimation of the Latent Population Distribution Using Spline-Based Densities , 2006, Psychometrika.

[20]  Clement A. Stone,et al.  Recovery of Marginal Maximum Likelihood Estimates in the Two-Parameter Logistic Response Model: An Evaluation of MULTILOG , 1992 .

[21]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[22]  R. J. Mokken,et al.  Handbook of modern item response theory , 1997 .

[23]  G. Marsaglia,et al.  A New Class of Random Number Generators , 1991 .

[24]  Maria Orlando,et al.  Summed-score linking using item response theory : Application to Depression measurement , 2000 .

[25]  F. Samejima Graded Response Model , 1997 .

[26]  B. gray-Little,et al.  An Item Response Theory Analysis of the Rosenberg Self-Esteem Scale , 1997 .

[27]  Li Cai,et al.  A Cautionary Note on Using G2(dif) to Assess Relative Model Fit in Categorical Data Analysis , 2006, Multivariate behavioral research.

[28]  James O. Ramsay,et al.  Differential equation models for statistical functions , 2000 .

[29]  William Stout,et al.  A nonparametric approach for assessing latent trait unidimensionality , 1987 .

[30]  L. Kirisci,et al.  The Robustness of BILOG to Violations of the Assumptions of Unidimensionality of Test Items and Normality of Ability Distribution. , 1995 .

[31]  Dean Follmann,et al.  Consistent estimation in the rasch model based on nonparametric margins , 1988 .

[32]  James O. Ramsay,et al.  Progress in the technology of measurement: Applications of item response models. , 1998 .

[33]  S Stark,et al.  Fitting Item Response Theory Models to Two Personality Inventories: Issues and Insights , 2001, Multivariate behavioral research.

[34]  L. Thurstone A law of comparative judgment. , 1994 .

[35]  David Thissen,et al.  Item Response Theory for Items Scored in Two Categories , 2001 .

[36]  S. Reise,et al.  Fitting the Two-Parameter Model to Personality Data , 1990 .

[37]  James O. Ramsay,et al.  Nonparametric Item Response Function Estimates with the EM Algorithm , 2002 .

[38]  E. Hannan Rational Transfer Function Approximation , 1987 .

[39]  R. Meijer,et al.  Analyzing psychopathology items: a case for nonparametric item response theory modeling. , 2004, Psychological methods.

[40]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[41]  Item Parameter Recovery for the Nominal Response Model , 1999 .

[42]  J. Abramowitz,et al.  The Anxiety Sensitivity Index - Revised: psychometric properties and factor structure in two nonclinical samples. , 2003, Behaviour research and therapy.

[43]  Robert J. Mokken,et al.  Nonparametric Models for Dichotomous Responses , 1997 .

[44]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[45]  F. Samejima Estimation of latent ability using a response pattern of graded scores , 1968 .

[46]  B. Junker,et al.  Nonparametric Item Response Theory in Action: An Overview of the Special Issue , 2001 .

[47]  S. Reise,et al.  How many IRT parameters does it take to model psychopathology items? , 2003, Psychological methods.

[48]  A. Zwinderman,et al.  Robustness of Marginal Maximum Likelihoo Estimation in the Rasch odel , 1990 .

[49]  P. Holland On the sampling theory roundations of item response theory models , 1990 .

[50]  J. Ramsay Kernel smoothing approaches to nonparametric item characteristic curve estimation , 1991 .

[51]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[52]  Richard Gallagher,et al.  Assessment of fear of fear in agoraphobics: the body sensations questionnaire and the agoraphobic cognitions questionnaire , 1984 .

[53]  Richard J. Patz,et al.  A Straightforward Approach to Markov Chain Monte Carlo Methods for Item Response Models , 1999 .

[54]  Larissa L. Smith,et al.  Gender differences on negative affectivity: an IRT study of differential item functioning on the Multidimensional Personality Questionnaire Stress Reaction Scale. , 1998, Journal of personality and social psychology.

[55]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[56]  S. Embretson,et al.  Item response theory for psychologists , 2000 .

[57]  J. Albert Bayesian Estimation of Normal Ogive Item Response Curves Using Gibbs Sampling , 1992 .

[58]  E. B. Andersen,et al.  Estimating the parameters of the latent population distribution , 1977 .

[59]  M Davidian,et al.  Linear Mixed Models with Flexible Distributions of Random Effects for Longitudinal Data , 2001, Biometrics.