Reducing power with dynamic critical path information

Recent research has shown that dynamic information regarding instruction criticality can be used to increase microprocessor performance. Critical path information can also be used in processors to achieve a better balance of power and performance. This paper uses the output of a dynamic critical path predictor to decrease the power consumption of key portions of the processor without incurring a corresponding decrease in performance. The optimizations include effective use of functional units with different power and latency characteristics and decreased issue logic power.

[1]  Brad Calder,et al.  Dynamic prediction of critical path instructions , 2001, Proceedings HPCA Seventh International Symposium on High-Performance Computer Architecture.

[2]  Norman P. Jouppi Cache write policies and performance , 1993, ISCA '93.

[3]  Chris Wilkerson,et al.  Locality vs. criticality , 2001, ISCA 2001.

[4]  Gurindar S. Sohi,et al.  A static power model for architects , 2000, MICRO 33.

[5]  S. Thompson MOS Scaling: Transistor Challenges for the 21st Century , 1998 .

[6]  Srilatha Manne,et al.  Power and performance tradeoffs using various caching strategies , 1998, Proceedings. 1998 International Symposium on Low Power Electronics and Design (IEEE Cat. No.98TH8379).

[7]  Margaret Martonosi,et al.  Wattch: a framework for architectural-level power analysis and optimizations , 2000, Proceedings of 27th International Symposium on Computer Architecture (IEEE Cat. No.RS00201).

[8]  Mark C. Johnson,et al.  Design and optimization of low voltage high performance dual threshold CMOS circuits , 1998, Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat. No.98CH36175).

[9]  James E. Smith,et al.  Complexity-Effective Superscalar Processors , 1997, Conference Proceedings. The 24th Annual International Symposium on Computer Architecture.

[10]  Richard E. Kessler,et al.  The Alpha 21264 microprocessor architecture , 1998, Proceedings International Conference on Computer Design. VLSI in Computers and Processors (Cat. No.98CB36273).

[11]  Dirk Grunwald,et al.  Confidence estimation for speculation control , 1998, ISCA.

[12]  Margaret Martonosi,et al.  Dynamic thermal management for high-performance microprocessors , 2001, Proceedings HPCA Seventh International Symposium on High-Performance Computer Architecture.

[13]  Gary S. Tyson,et al.  Evaluating Design Tradeoffs in Dual Speed Pipelines , 2001 .

[14]  Brad Calder,et al.  Computing Along the Critical Path , 2002 .

[15]  Rastislav Bodík,et al.  Focusing processor policies via critical-path prediction , 2001, Proceedings 28th Annual International Symposium on Computer Architecture.

[16]  Shekhar Y. Borkar,et al.  Design challenges of technology scaling , 1999, IEEE Micro.

[17]  Margaret Martonosi,et al.  Dynamically exploiting narrow width operands to improve processor power and performance , 1999, Proceedings Fifth International Symposium on High-Performance Computer Architecture.

[18]  Seung-Moon Yoo,et al.  A framework for dynamic energy efficiency and temperature management , 2000, Proceedings 33rd Annual IEEE/ACM International Symposium on Microarchitecture. MICRO-33 2000.

[19]  Mahmut T. Kandemir,et al.  Energy-driven integrated hardware-software optimizations using SimplePower , 2000, Proceedings of 27th International Symposium on Computer Architecture (IEEE Cat. No.RS00201).