On the solution of general absolute value equations

Abstract In this note, we provide necessary and sufficient conditions that ensure the existence and uniqueness of solution of the general form of absolute value equations (AVEs), A x − B | x | = b . The performed analysis is based on the equivalence between AVEs and horizontal linear complementarity problems (HLCPs). New sufficient conditions are proposed as well. We then compare the proposed conditions with recent results in the literature and we detail how efficient solution methods for HLCPs can be easily applied to the solution of general AVEs. Finally, we provide comments on the solvability of general AVEs under conditions larger than uniqueness of solution.

[1]  Davod Khojasteh Salkuyeh,et al.  The Picard–HSS iteration method for absolute value equations , 2014, Optim. Lett..

[2]  Jian-Jun Zhang The relaxed nonlinear PHSS-like iteration method for absolute value equations , 2015, Appl. Math. Comput..

[3]  F. Mezzadri,et al.  A modulus-based nonsmooth Newton’s method for solving horizontal linear complementarity problems , 2019, Optimization Letters.

[4]  Jiri Rohn,et al.  An iterative method for solving absolute value equations and sufficient conditions for unique solvability , 2014, Optim. Lett..

[5]  Jiri Rohn,et al.  A theorem of the alternatives for the equation |Ax| − |B||x| = b , 2004, Optimization Letters.

[6]  Oleg A. Prokopyev,et al.  On equivalent reformulations for absolute value equations , 2009, Comput. Optim. Appl..

[7]  Cui-Xia Li,et al.  A note on unique solvability of the absolute value equation , 2020, Optim. Lett..

[8]  Jiri Rohn,et al.  An algorithm for solving the absolute value equation , 2009 .

[9]  Qiong Zhang,et al.  A generalized Newton method for absolute value equations associated with second order cones , 2011, J. Comput. Appl. Math..

[10]  Hua Zheng,et al.  On convergence of the modulus-based matrix splitting iteration method for horizontal linear complementarity problems of H+-matrices , 2020, Appl. Math. Comput..

[11]  Changfeng Ma,et al.  Convergent conditions of the generalized Newton method for absolute value equation over second order cones , 2019, Appl. Math. Lett..

[12]  Jiri Rohn On unique solvability of the absolute value equation , 2009, Optim. Lett..

[13]  Asif Iqbal,et al.  Levenberg-Marquardt method for solving systems of absolute value equations , 2015, J. Comput. Appl. Math..

[14]  Olvi L. Mangasarian,et al.  Absolute value equation solution via concave minimization , 2006, Optim. Lett..

[15]  Cui-Xia Li,et al.  The unique solution of the absolute value equations , 2018, Appl. Math. Lett..

[16]  Francesco Mezzadri,et al.  Splitting Methods for a Class of Horizontal Linear Complementarity Problems , 2018, Journal of Optimization Theory and Applications.

[17]  Changfeng Ma,et al.  SOR-like iteration method for solving absolute value equations , 2017, Appl. Math. Comput..

[18]  Richard S. Varga,et al.  Matrix Iterative Analysis , 2000, The Mathematical Gazette.

[19]  You,et al.  H-SPLITTINGS AND ASYNCHRONOUS PARALLEL ITERATIVE METHODS , 1997 .

[20]  Olvi L. Mangasarian,et al.  Absolute value programming , 2007, Comput. Optim. Appl..

[21]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[22]  Lina Abdallah,et al.  Solving absolute value equation using complementarity and smoothing functions , 2018, J. Comput. Appl. Math..

[23]  Yifen Ke,et al.  The new iteration algorithm for absolute value equation , 2020, Appl. Math. Lett..

[24]  Francesco Mezzadri,et al.  Modulus-based matrix splitting methods for horizontal linear complementarity problems , 2019, Numerical Algorithms.

[25]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[26]  Lou Caccetta,et al.  A globally and quadratically convergent method for absolute value equations , 2011, Comput. Optim. Appl..

[27]  O. Mangasarian,et al.  Absolute value equations , 2006 .

[28]  Olvi L. Mangasarian A hybrid algorithm for solving the absolute value equation , 2015, Optim. Lett..