Nature as a network of morphological infocomputational processes for cognitive agents

Abstract This paper presents a view of nature as a network of infocomputational agents organized in a dynamical hierarchy of levels. It provides a framework for unification of currently disparate understandings of natural, formal, technical, behavioral and social phenomena based on information as a structure, differences in one system that cause the differences in another system, and computation as its dynamics, i.e. physical process of morphological change in the informational structure. We address some of the frequent misunderstandings regarding the natural/morphological computational models and their relationships to physical systems, especially cognitive systems such as living beings. Natural morphological infocomputation as a conceptual framework necessitates generalization of models of computation beyond the traditional Turing machine model presenting symbol manipulation, and requires agent-based concurrent resource-sensitive models of computation in order to be able to cover the whole range of phenomena from physics to cognition. The central role of agency, particularly material vs. cognitive agency is highlighted.

[1]  Giulio Chiribella,et al.  Quantum Theory, Namely the Pure and Reversible Theory of Information , 2012, Entropy.

[2]  J. Stewart Cognition = life: Implications for higher-level cognition , 1995, Behavioural Processes.

[3]  Vlatko Vedral,et al.  Decoding Reality: The Universe as Quantum Information , 2010 .

[4]  Aaron Sloman,et al.  Beyond Turing Equivalence , 1996 .

[5]  N. Block Consciousness, accessibility, and the mesh between psychology and neuroscience , 2007, Behavioral and Brain Sciences.

[6]  E. Dil Coupling $q$-deformed dark energy to dark matter , 2016, 1610.01652.

[7]  Mark Burgin,et al.  Super-Recursive Algorithms , 2004, Monographs in Computer Science.

[8]  Alexei Kurakin,et al.  The self-organizing fractal theory as a universal discovery method: the phenomenon of life , 2011, Theoretical Biology and Medical Modelling.

[9]  Gordana Dodig Crnkovic Physical Computation as Dynamics of Form that Glues Everything Together , 2012 .

[10]  Gordana Dodig-Crnkovic,et al.  A Dialogue Concerning Two World Systems: Info-Computational vs. Mechanistic , 2009, ArXiv.

[11]  Carl Hewitt,et al.  What is Computation? Actor Model versus Turing's Model , 2012 .

[12]  Chris Fields If Physics Is an Information Science, What Is an Observer? , 2012, Inf..

[13]  Hans Christian,et al.  Information: The New Language of Science , 2003 .

[14]  Mark Burgin,et al.  Theory of Information - Fundamentality, Diversity and Unification , 2009, World Scientific Series in Information Studies.

[15]  Carl Hewitt,et al.  What Is Commitment? Physical, Organizational, and Social (Revised) , 2006, COIN@AAMAS/ECAI.

[16]  Philip Goyal,et al.  Information Physics - Towards a New Conception of Physical Reality , 2012, Inf..

[17]  Peter J. Denning,et al.  Computing is a natural science , 2007, CACM.

[18]  Hector Zenil,et al.  A Computable Universe , 2012 .

[19]  E. Ben-Jacob,et al.  Social behavior of bacteria: from physics to complex organization , 2008 .

[20]  Gordana Dodig Crnkovic,et al.  Information and Energy/Matter , 2012, Inf..

[21]  Hector Zenil,et al.  Information Theory and Computational Thermodynamics: Lessons for Biology from Physics , 2012, Inf..

[22]  Samson Abramsky,et al.  Information, Processes and Games , 2016, ArXiv.

[23]  M. Minsky The Society of Mind , 1986 .

[24]  Yasufumi Saruwatari,et al.  Extensional Information Articulation from the Universe , 2012, Inf..

[25]  Gordana Dodig-Crnkovic,et al.  Info-Computational Philosophy of Nature : An Informational Universe With Computational Dynamics , 2011 .

[26]  Nicole Fassbinder,et al.  Steps To An Ecology Of Mind Collected Essays In Anthropology Psychiatry Evolution And Epistemology , 2016 .

[27]  I. Prigogine,et al.  Order out of chaos , 1984 .

[28]  Gordon Broderick,et al.  Using an agent-based model to analyze the dynamic communication network of the immune response , 2011, Theoretical Biology and Medical Modelling.

[29]  Carl Hewitt,et al.  A Universal Modular ACTOR Formalism for Artificial Intelligence , 1973, IJCAI.

[30]  L. Munari How the body shapes the way we think — a new view of intelligence , 2009 .

[31]  Gregory J. Chaitin,et al.  Epistemology as Information Theory : From Leibniz to Ω ∗ , 2005 .

[32]  Charles Seife Decoding the Universe: How the New Science of Information Is Explaining Everything in the Cosmos, from Our Brains to Black Holes , 2007 .

[33]  Gordana Dodig-Crnkovic,et al.  Information, Computation, Cognition. Agency-based Hierarchies of Levels , 2013, PT-AI.

[34]  Konrad Zuse Calculating Space (Rechnender Raum) , 2012 .

[35]  Leo Apostel,et al.  Evolutionary Transitions : How Do Levels of Complexity Emerge ? , 2000 .

[36]  David Deutsch,et al.  Constructor theory of information , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  Gordana Dodig-Crnkovic,et al.  Significance of Models of Computation, from Turing Model to Natural Computation , 2011, Minds and Machines.

[38]  Gordana Dodig-Crnkovic,et al.  Computing Nature: Turing Centenary Perspective , 2013 .

[39]  Christopher D. Fiorillo,et al.  Beyond Bayes: On the Need for a Unified and Jaynesian Definition of Probability and Information within Neuroscience , 2012, Inf..

[40]  William A. Phillips,et al.  Self-Organized Complexity and Coherent Infomax from the Viewpoint of Jaynes's Probability Theory , 2012, Inf..

[41]  Gordana Dodig-Crnkovic Info-computationalism and Morphological Computing of Informational Structure , 2012 .

[42]  John Collier,et al.  Hierarchical Dynamical Information Systems With a Focus on Biology , 2003, Entropy.

[43]  Takashi Ikegami,et al.  Endophysics: The world as an interface , 2002 .

[44]  E. Fredkin Digital mechanics: an informational process based on reversible universal cellular automata , 1990 .

[45]  R. Pfeifer,et al.  Morphological computation for adaptive behavior and cognition , 2006 .

[46]  Grzegorz Rozenberg,et al.  The many facets of natural computing , 2008, Commun. ACM.

[47]  Gordana Dodig-Crnkovic,et al.  The Info-computational Nature of Morphological Computing , 2011, PT-AI.

[48]  R. Feynman Simulating physics with computers , 1999 .

[49]  G. J. Chaitin Epistemology as Information Theory: From Leibniz to Omega , 2005 .

[50]  Rolf Pfeifer Morphological Computation - Connecting Brain, Body, and Environment , 2006, Australian Conference on Artificial Intelligence.

[51]  Benedikt Löwe,et al.  New Computational Paradigms , 2005 .

[52]  E. Wigner The Unreasonable Effectiveness of Mathematics in the Natural Sciences (reprint) , 1960 .

[53]  S. Lloyd Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos , 2006 .

[54]  Ken B. Wharton,et al.  Quantum States as Ordinary Information , 2014, Inf..

[55]  Fumiya Iida,et al.  Morphological Computation: Connecting Body, Brain, and Environment (特集:ロボティクスと神経科学) , 2005 .

[56]  Grzegorz Rozenberg,et al.  Handbook of Natural Computing , 2011, Springer Berlin Heidelberg.

[57]  Koichiro Matsuno,et al.  Chemical Affinity as Material Agency for Naturalizing Contextual Meaning , 2012, Inf..

[58]  Gordana Dodig-Crnkovic,et al.  A Taxonomy of Computation and Information Architecture , 2015, ECSA Workshops.

[59]  H. Maturana,et al.  Autopoiesis and Cognition , 1980 .

[60]  A. Clark,et al.  The Extended Mind , 1998, Analysis.

[61]  Gordana Dodig-Crnkovic Investigations into Information Semantics and Ethics of Computing , 2006 .

[62]  Eshel Ben-Jacob,et al.  Bacterial self–organization: co–enhancement of complexification and adaptability in a dynamic environment , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[63]  J. Wheeler Information, physics, quantum: the search for links , 1999 .

[64]  Gordana Dodig Crnkovic,et al.  Natural/Unconventional Computing and Its Philosophical Significance , 2012, Entropy.

[65]  Gordana Dodig-Crnkovic,et al.  Modeling Life as Cognitive Info-computation , 2014, CiE.

[66]  Sunil L. Kim,et al.  Describing realistic states of knowledge with exact probabilities , 2016 .

[67]  I. Prigogine,et al.  From Being to Becoming: Time and Complexity in the Physical Sciences , 1982 .

[68]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[69]  Vlatko Vedral,et al.  Information and Physics , 2012, Inf..

[70]  Gordana Dodig-Crnkovic,et al.  Physical Computation as Dynamics of Form that Glues Everything Together , 2012, Inf..

[71]  Gordana Dodig-Crnkovic,et al.  Where Do New Ideas Come From? How Do They Emerge? Epistemology as Computation (Information Processing) , 2007 .

[72]  B. Bassler,et al.  The languages of bacteria. , 2001, Genes & development.

[73]  R. Landauer Information is physical , 1991 .