Spatial Postprocessing of Ensemble Forecasts for Temperature Using Nonhomogeneous Gaussian Regression

AbstractStatistical postprocessing techniques are commonly used to improve the skill of ensembles from numerical weather forecasts. This paper considers spatial extensions of the well-established nonhomogeneous Gaussian regression (NGR) postprocessing technique for surface temperature and a recent modification thereof in which the local climatology is included in the regression model to permit locally adaptive postprocessing. In a comparative study employing 21-h forecasts from the Consortium for Small Scale Modelling ensemble predictive system over Germany (COSMO-DE), two approaches for modeling spatial forecast error correlations are considered: a parametric Gaussian random field model and the ensemble copula coupling (ECC) approach, which utilizes the spatial rank correlation structure of the raw ensemble. Additionally, the NGR methods are compared to both univariate and spatial versions of the ensemble Bayesian model averaging (BMA) postprocessing technique.

[1]  G. Brier VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF PROBABILITY , 1950 .

[2]  A. P. Dawid,et al.  Present position and potential developments: some personal views , 1984 .

[3]  N. Cressie Fitting variogram models by weighted least squares , 1985 .

[4]  Gordon A. Fenton,et al.  Simulation and analysis of random fields , 1990 .

[5]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[6]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[7]  Jeffrey L. Anderson A Method for Producing and Evaluating Probabilistic Forecasts from Ensemble Model Integrations , 1996 .

[8]  Thomas M. Hamill,et al.  Verification of Eta–RSM Short-Range Ensemble Forecasts , 1997 .

[9]  Thomas M. Hamill,et al.  Hypothesis Tests for Evaluating Numerical Precipitation Forecasts , 1999 .

[10]  Paola Sebastiani,et al.  Coherent dispersion criteria for optimal experimental design , 1999 .

[11]  M. Schlather Simulation and Analysis of Random Fields , 2001 .

[12]  J. Steppeler,et al.  Meso-gamma scale forecasts using the nonhydrostatic model LM , 2003 .

[13]  Tilmann Gneiting,et al.  Calibrated Probabilistic Mesoscale Weather Field Forecasting , 2004 .

[14]  A. Raftery,et al.  Using Bayesian Model Averaging to Calibrate Forecast Ensembles , 2005 .

[15]  Anton H. Westveld,et al.  Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation , 2005 .

[16]  John M. Lewis,et al.  Roots of Ensemble Forecasting , 2005 .

[17]  R. Stull,et al.  Probabilistic aspects of meteorological and ozone regional ensemble forecasts , 2006 .

[18]  T. Gneiting,et al.  The continuous ranked probability score for circular variables and its application to mesoscale forecast ensemble verification , 2006 .

[19]  A. Raftery,et al.  Probabilistic forecasts, calibration and sharpness , 2007 .

[20]  Thomas M. Hamill,et al.  Comparison of Ensemble-MOS Methods Using GFS Reforecasts , 2007 .

[21]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[22]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[23]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[24]  Adrian E. Raftery,et al.  Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts , 2007 .

[25]  Renate Hagedorn,et al.  Probabilistic Forecast Calibration Using ECMWF and GFS Ensemble Reforecasts. Part II: Precipitation , 2008 .

[26]  Tim N. Palmer,et al.  Ensemble forecasting , 2008, J. Comput. Phys..

[27]  Renate Hagedorn,et al.  Probabilistic Forecast Calibration Using ECMWF and GFS Ensemble Reforecasts. Part I: Two-Meter Temperatures , 2008 .

[28]  Leonard A. Smith,et al.  From ensemble forecasts to predictive distribution functions , 2008 .

[29]  T. Gneiting Making and Evaluating Point Forecasts , 2009, 0912.0902.

[30]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[31]  A. Kann,et al.  Calibrating 2-m Temperature of Limited-Area Ensemble Forecasts Using High-Resolution Analysis , 2009 .

[32]  Tilmann Gneiting,et al.  Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression , 2010 .

[33]  Michael L. Stein,et al.  Local likelihood estimation for nonstationary random fields , 2011, J. Multivar. Anal..

[34]  Adrian E. Raftery,et al.  Locally Calibrated Probabilistic Temperature Forecasting Using Geostatistical Model Averaging and Local Bayesian Model Averaging , 2011 .

[35]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[36]  Z. B. Bouallègue,et al.  Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries , 2011 .

[37]  Istvan Szunyogh,et al.  A Statistical Investigation of the Sensitivity of Ensemble-Based Kalman Filters to Covariance Filtering , 2011 .

[38]  Initial condition perturbations for the COSMO-DEEPS , 2011 .

[39]  M. Baldauf,et al.  Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities , 2011 .

[40]  J. Bröcker Evaluating raw ensembles with the continuous ranked probability score , 2012 .

[41]  Matthew S. Johnson,et al.  Probabilistic wind gust forecasting using nonhomogeneous Gaussian regression , 2012 .

[42]  Emmanuel Roulin,et al.  Postprocessing of Ensemble Precipitation Predictions with Extended Logistic Regression Based on Hindcasts , 2012 .

[43]  Thordis L. Thorarinsdottir,et al.  Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas , 2012, 1202.3956.

[44]  T. Thorarinsdottir,et al.  Assessing the Calibration of High-Dimensional Ensemble Forecasts Using Rank Histograms , 2013, 1310.0236.

[45]  T. Thorarinsdottir,et al.  Comparison of non-homogeneous regression models for probabilistic wind speed forecasting , 2013, 1305.2026.

[46]  M. Scheuerer Probabilistic quantitative precipitation forecasting using Ensemble Model Output Statistics , 2013, 1302.0893.

[47]  T. Gneiting,et al.  Uncertainty Quantification in Complex Simulation Models Using Ensemble Copula Coupling , 2013, 1302.7149.

[48]  Balaji Rajagopalan,et al.  Daily minimum and maximum temperature simulation over complex terrain , 2012, 1210.1814.

[49]  Pierre Pinson,et al.  Discrimination ability of the Energy score , 2013 .

[50]  G. König,et al.  Gridded, locally calibrated, probabilistic temperature forecasts based on ensemble model output statistics , 2014 .

[51]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[52]  M. Scheuerer,et al.  Spatially adaptive post‐processing of ensemble forecasts for temperature , 2013, 1302.0883.

[53]  Willem A. Landman,et al.  Statistical Methods in the Atmospheric Sciences (3rd Edition), Daniel S. Wilks : book review , 2015 .

[54]  Bert Van Schaeybroeck,et al.  Ensemble post‐processing using member‐by‐member approaches: theoretical aspects , 2015 .