Comparison of Smoothing Parameterizations in Bivariate Kernel Density Estimation

Abstract The basic kernel density estimator in one dimension has a single smoothing parameter, usually referred to as the bandwidth. For higher dimensions, however, there are several options for smoothing parameterization of the kernel estimator. For the bivariate case, there can be between one and three independent smoothing parameters in the estimator, which leads to a flexibility versus complexity trade-off when using this estimator in practice. In this article the performances of the different possible smoothing parameterizations are compared, using both the asymptotic and exact mean integrated squared error. Our results show that it is important to have independent smoothing parameters for each of the coordinate directions. Although this is enough for many situations, for densities with high amounts of curvature in directions different to those of the coordinate axes, substantial gains can be made by allowing the kernel mass to have arbitrary orientations. The “sphering” approaches to choosing this o...

[1]  T. Cacoullos Estimation of a multivariate density , 1966 .

[2]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[3]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[4]  P. Deheuvels Estimation non paramétrique de la densité par histogrammes généralisés , 1977 .

[5]  D. W. Scott Averaged Shifted Histograms: Effective Nonparametric Density Estimators in Several Dimensions , 1985 .

[6]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[7]  J. S. Marron,et al.  Variable window width kernel estimates of probability densities , 1988 .

[8]  W. Härdle Applied Nonparametric Regression , 1991 .

[9]  M. C. Jones Variable kernel density estimates and variable kernel density estimates , 1990 .

[10]  James Stephen Marron,et al.  Transformations in Density Estimation , 1991 .

[11]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[12]  H. Müller,et al.  Applications of Multiparameter Weak Convergence for Adaptive Nonparametric Curve Estimation , 1991 .

[13]  W. Härdle Smoothing Techniques: With Implementation in S , 1991 .

[14]  David W. Scott,et al.  Feasibility of multivariate density estimates , 1991 .

[15]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[16]  W. Härdle Applied Nonparametric Regression , 1992 .

[17]  M. Wand Error analysis for general multtvariate kernel estimators , 1992 .

[18]  D. W. Scott,et al.  Variable Kernel Density Estimation , 1992 .

[19]  M. Wand,et al.  EXACT MEAN INTEGRATED SQUARED ERROR , 1992 .