Liquid K–Na Alloy Anode Enables Dendrite‐Free Potassium Batteries

A K-Na liquid alloy allows a dendrite-free high-capacity anode; its immiscibility with an organic liquid electrolyte offers a liquid-liquid anode-electrolyte interface. Working with a sodiated Na2 MnFe(CN)6 cathode, the working cation becomes K+ to give a potassium battery of long cycle life with an acceptable capacity at high charge/discharge rates.

[1]  R. Compton,et al.  The electrode potentials of the Group I alkali metals in the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide , 2010 .

[2]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[3]  Xiulei Ji,et al.  Carbon Electrodes for K-Ion Batteries. , 2015, Journal of the American Chemical Society.

[4]  Yang Shen,et al.  Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte , 2015 .

[5]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[6]  Zhenguo Yang,et al.  Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives , 2010 .

[7]  Brian L. Spatocco,et al.  Liquid metal batteries: past, present, and future. , 2013, Chemical reviews.

[8]  Jun Liu,et al.  Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid , 2013 .

[9]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[10]  Nina Balke,et al.  Nanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. , 2015, Nano letters.

[11]  F. Bella,et al.  Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries , 2016, Scientific Reports.

[12]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[13]  D. Webster The effect of low melting point impurities on the properties of aluminum-lithium alloys , 1987 .

[14]  Graeme Henkelman,et al.  Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. , 2015, Journal of the American Chemical Society.

[15]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[16]  John B Goodenough,et al.  A superior low-cost cathode for a Na-ion battery. , 2013, Angewandte Chemie.

[17]  B. Ninham,et al.  The Solvation of Anions in Propylene Carbonate , 2015, Journal of Solution Chemistry.

[18]  B. Scrosati,et al.  An electrochemical impedance study on the interfacial behaviour of KC8 electrodes in LiClO4 containing electrolytes , 1999 .

[19]  Shinichi Komaba,et al.  Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors , 2015 .

[20]  刘浩,et al.  LiF修饰TiO2改善可见光催化性能研究 Visible Light Photocatalytic Performance of Lithium Fluoride Modified TiO2 , 2014 .

[21]  J. E. Jackson,et al.  Alkali metals plus silica gel: powerful reducing agents and convenient hydrogen sources. , 2005, Journal of the American Chemical Society.

[22]  N. Imanishi,et al.  Stability of Nb-Doped Cubic Li7La3Zr2O12 with Lithium Metal , 2013 .

[23]  L. Pi,et al.  Evolution of the intrinsic electronic phase separation in La0.6Er0.1Sr0.3MnO3 perovskite , 2016, Scientific Reports.

[24]  G. Sahu,et al.  Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4 , 2014 .

[25]  Tetsuya Tsuda,et al.  In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte. , 2013, Physical chemistry chemical physics : PCCP.

[26]  C. Grey,et al.  Insights into Electrochemical Sodium Metal Deposition as Probed with in Situ (23)Na NMR. , 2016, Journal of the American Chemical Society.

[27]  S. N. Skovorod'ko,et al.  The Density of Liquid Sodium–Potassium Eutectic , 2003 .

[28]  J. E. Jackson,et al.  Nano-Structures and Interactions of Alkali Metals within Silica Gel , 2011 .

[29]  Donald R. Sadoway,et al.  Lithium–antimony–lead liquid metal battery for grid-level energy storage , 2014, Nature.

[30]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.