Dynamical models and the onset of chaos in space debris

[1]  Desmond George King-Hele,et al.  The effect of the earth’s oblateness on the orbit of a near satellite , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  P. Musen,et al.  Lunar and Solar Perturbations on Satellite Orbits , 1959, Science.

[3]  Y. Kozai On the Effects of the Sun and the Moon upon the Motion of a Close-Earth Satellite , 1959 .

[4]  R Jastrow,et al.  Satellite Orbits. , 1961, Science.

[5]  P. Musen,et al.  Development of the Lunar and Solar Perturbations in the Motion of an Artificial Satellite , 1961 .

[6]  P. Koskela,et al.  LUNI-SOLAR PERTURBATIONS OF THE ORBIT OF AN EARTH SATELLITE , 1962 .

[7]  W. M. Kaula Development of the lunar and solar disturbing functions for a close satellite , 1962 .

[8]  G. E. Cook,et al.  The long-period motion of the plane of a distant circular orbit , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[9]  Gen-Ichiro Hori,et al.  Theory of general perturbations with unspecified canonical variables , 1966 .

[10]  W. M. Kaula Theory of satellite geodesy , 1966 .

[11]  André Deprit,et al.  Canonical transformations depending on a small parameter , 1969 .

[12]  S. F. Mello Analytical Study of the Earth's Shadowing Effects on Satellite Orbits , 1972 .

[13]  G. Giacaglia Lunar perturbations of artificial satellites of the earth , 1973 .

[14]  G. Giacaglia A note on Hansen's coefficients in satellite theory , 1976 .

[15]  S. Hughes,et al.  Earth satellite orbits with resonant lunisolar perturbations I. Resonances dependent only on inclination , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[17]  S. Hughes,et al.  Earth satellite orbits with resonant lunisolar perturbations - II. Some resonances dependent on the semi-major axis, eccentricity and inclination , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  L. Arnold,et al.  Lyapunov exponents: A survey , 1986 .

[19]  M. Lane On analytic modeling of lunar perturbations of artificial satellites of the earth , 1989 .

[20]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[21]  Donald J. Kessler,et al.  Reduced debris hazard resulting from a stable inclined geosynchronous orbit , 1993 .

[22]  J. Laskar,et al.  Numerical expressions for precession formulae and mean elements for the Moon and the planets. , 1994 .

[23]  K. Howell,et al.  Dynamics of artificial satellite orbits with tesseral resonances including the effects of luni- solar perturbations , 1997 .

[24]  E. Lega,et al.  FAST LYAPUNOV INDICATORS. APPLICATION TO ASTEROIDAL MOTION , 1997 .

[25]  C. Murray,et al.  Solar System Dynamics: Expansion of the Disturbing Function , 1999 .

[26]  Sławomir Breiter,et al.  Lunisolar Resonances Revisited , 2001 .

[27]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[28]  R. A. Gick,et al.  Long-term evolution of navigation satellite orbits: GPS/GLONASS/GALILEO , 2004 .

[29]  P. Krisko,et al.  Geosynchronous region orbital debris modeling with GEO_EVOLVE 2.0 , 2004 .

[30]  J. Liou,et al.  Orbital Dynamics of High Area-To-Mass Ratio Debris and Their Distribution in the Geosynchronous Region , 2005 .

[31]  C. Chao,et al.  Applied Orbit Perturbation and Maintenance , 2005 .

[32]  End-Of-Life Disposal of Geostationary Satellites , 2005 .

[33]  B. Melendo,et al.  Long-term predictability of orbits around the geosynchronous altitude , 2005 .

[34]  S. Finch Lyapunov Exponents , 2007 .

[35]  Thomas Schildknecht,et al.  Optical surveys for space debris , 2007 .

[36]  Luciano Anselmo,et al.  Analytical and semi-analytical investigations of geosynchronous space debris with high area-to-mass ratios , 2008 .

[37]  Anne Lemaitre,et al.  Semi-analytical investigations of high area-to-mass ratio geosynchronous space debris including Earth’s shadowing effects , 2008 .

[38]  Alessandro Rossi,et al.  Resonant dynamics of Medium Earth Orbits: space debris issues , 2008 .

[39]  S. Tremaine,et al.  SATELLITE DYNAMICS ON THE LAPLACE SURFACE , 2008, 0809.0237.

[40]  Luciano Anselmo,et al.  Long-Term Evolution of Geosynchronous Orbital Debris with High Area-to-Mass Ratios , 2008 .

[41]  Pini Gurfil,et al.  Semianalytical Study of Geosynchronous Orbits About a Precessing Oblate Earth Under Lunisolar Gravitation and Tesseral Resonance , 2009 .

[42]  A web of secondary resonances for large A/m geostationary debris , 2009 .

[43]  N. Delsate,et al.  Global dynamics of high area-to-mass ratios GEO space debris by means of the MEGNO indicator , 2008, 0810.1859.

[44]  Florent Deleflie,et al.  Semi-analytical theory of mean orbital motion for geosynchronous space debris under gravitational influence , 2009 .

[45]  Alessandro Rossi,et al.  Space debris , 2011, Scholarpedia.

[46]  Alessandro Rossi,et al.  Semi-analytical investigations of the long term evolution of the eccentricity of Galileo and GPS-like orbits , 2011 .

[47]  Nicholas L. Johnson A new look at the GEO and near-GEO regimes: Operations, disposals, and debris , 2012 .

[48]  Paul V. Anderson,et al.  Local orbital debris flux study in the geostationary ring , 2012 .

[49]  A. Lemaitre,et al.  The impact of Earth’s shadow on the long-term evolution of space debris , 2013 .

[50]  D. Scheeres,et al.  Long-term dynamics of high area-to-mass ratio objects in high-Earth orbit , 2013 .

[51]  Daniel J. Scheeres,et al.  On the Milankovitch orbital elements for perturbed Keplerian motion , 2014 .

[52]  Alessandra Celletti,et al.  On the Dynamics of Space Debris: 1:1 and 2:1 Resonances , 2014, J. Nonlinear Sci..

[53]  Jonas Radtke,et al.  Impact of eccentricity build-up and graveyard disposal Strategies on MEO navigation constellations , 2014 .

[54]  D. Scheeres,et al.  LAPLACE PLANE MODIFICATIONS ARISING FROM SOLAR RADIATION PRESSURE , 2014 .

[55]  A study of the main resonances outside the geostationary ring , 2015, 1501.06273.

[56]  G. Pucacco,et al.  Analytical development of the lunisolar disturbing function and the critical inclination secular resonance , 2015, 1511.03567.

[57]  A. Celletti,et al.  Dynamical investigation of minor resonances for space debris , 2015, 1504.05527.

[58]  Alessandro Rossi,et al.  Chaos in navigation satellite orbits caused by the perturbed motion of the Moon , 2015, 1503.02581.

[59]  A. Lemaitre,et al.  Long-term evolution of space debris under the $$J_2$$J2 effect, the solar radiation pressure and the solar and lunar perturbations , 2015 .

[60]  Alessandro Rossi,et al.  Galileo disposal strategy: stability, chaos and predictability , 2015, 1512.05822.

[61]  Chang-Yin Zhao,et al.  Analysis on the long term orbital evolution of Molniya satellites , 2015 .

[62]  Tadashi Yokoyama,et al.  Study of Some Strategies for Disposal of the GNSS Satellites , 2015 .

[63]  Alessandro Rossi,et al.  A numerical investigation on the eccentricity growth of GNSS disposal orbits , 2016 .

[64]  Alessandro Rossi,et al.  The dynamical structure of the MEO region: long-term stability, chaos, and transport , 2015, 1507.06170.

[65]  Giuseppe Pucacco,et al.  Bifurcation of Lunisolar Secular Resonances for Space Debris Orbits , 2015, SIAM J. Appl. Dyn. Syst..

[66]  Alessandra Celletti,et al.  A Study of the Lunisolar Secular Resonance 2ω˙+Ω˙=0 , 2016, Front. Astron. Space Sci..

[67]  Geostationary secular dynamics revisited: application to high area-to-mass ratio objects , 2016, 1611.08916.

[68]  A. Celletti,et al.  Poynting-Robertson drag and solar wind in the space debris problem , 2016, 1605.06965.

[69]  Aaron J. Rosengren,et al.  FROM ORDER TO CHAOS IN EARTH SATELLITE ORBITS , 2016, 1606.04180.

[70]  Alessandra Celletti,et al.  Dynamics of Resonances and Equilibria of Low Earth Objects , 2017, SIAM J. Appl. Dyn. Syst..

[71]  BLRToN C. CouR-PALArs,et al.  Collision Frequency of Artificial Satellites : The Creation of a Debris Belt , 2022 .