A phenetic analysis of Typha in Korea and far east Russia

We used principal components analysis (PCA) and UPGMA cluster analysis to determine taxonomically definable limits and to estimate the phenetic relationships among four Typhaspecies from Korea and far east Russia using 25 quantitative characters. A scatter plot of the first two principal components resolved four clusters among the 77 specimens of Typha examined from Korea and far east Russia. The clusters corresponded to the four currently recognized species. Typha latifolia was readily distinguished from other species by having wide leaves and female inflorescences. Typha angustifolia was distinguished from T. orientalis and T. laxmanni by the long male inflorescences and large gap between male and female inflorescences. Typha laxmanniwas distinguished from T. orientalis by a higher ratio of male and female inflorescence lengths than others. UPGMA analysis also showed that individuals of Typha species from Korea and far east Russia form discrete clusters corresponding to four species. © 2002 Elsevier Science B.V. All rights reserved.

[1]  Arthur Cronquist,et al.  Angiosperm Orders and Families. (Book Reviews: An Integrated System of Classification of Flowering Plants) , 1982 .

[2]  G. A. Mulligan The biology of Canadian weeds , 1979 .

[3]  R. Sharitz,et al.  COMPARISON OF ISOZYMES AMONG TYPHA SPECIES IN THE EASTERN UNITED STATES , 1980 .

[4]  N. Hotchkiss,et al.  Taxonomy and Distribution of N. American Cat-Tails , 1949 .

[5]  B. White,et al.  Morphological analysis of genetically identified cattails Typha latifolia, Typha angustifolia, and Typha ×glauca , 1999 .

[6]  Prof. Dr. Rolf M. T. Dahlgren,et al.  The Families of the Monocotyledons , 1985, Springer Berlin Heidelberg.

[7]  T. Koyama,et al.  Flora of Taiwan Vol. 1 , 1975 .

[8]  C. D. Cook,et al.  Water Plants of the World , 1975 .

[9]  F. Rohlf,et al.  NTSYS-pc Numerical Taxonomy and Multivariate Analysis System, version 2.1: Owner manual , 1992 .

[10]  John E. E. Ebinger Typha angustifolia L. , 1967 .

[11]  J. H. Stathis,et al.  Identification of Native Defects in a-SiO2 , 1988 .

[12]  E. Crossman Taxonomy and distribution , 1996 .

[13]  J. Grace,et al.  THE BIOLOGY OF CANADIAN WEEDS.: 73. Typha latifolia L., Typha angustifolia L. and Typha xglauca Godr. , 1986 .

[14]  A. L. Takhtadzhi︠a︡n Diversity and classification of flowering plants , 1997 .

[15]  R. Sharitz,et al.  GENETIC VARIATION AMONG TYPHA POPULATIONS OF THE SOUTHEASTERN UNITED STATES , 1978, Evolution; international journal of organic evolution.

[16]  Christopher D.K. Cook Aquatic plants of Japan: Yasuro Kadono. Bunichi Sogo Shuppan, Tokyo, 1994, pp. i-viii, 1–79, Yen 15 450, ISBN 4-82993034-9 , 1995 .

[17]  J. Doyle,et al.  The Bases of Angiosperm Phylogeny: Palynology , 1975 .

[18]  B. Gopal,et al.  A note on the identity of Typha elephantina roxb. , 1980 .

[19]  J. Ohwi Flora of Japan , 1984 .

[20]  S. G. Smith Experimental and Natural Hybrids in North American Typha (Typhaceae) , 1967 .

[21]  B. Keane,et al.  Genetic diversity of Typha latifolia (Typhaceae) and the impact of pollutants examined with tandem-repetitive DNA probes. , 1999, American journal of botany.

[22]  B. White,et al.  An examination of hybridization between the cattail species Typha latifolia and Typha angustifolia using random amplified polymorphic DNA and chloroplast DNA markers , 1999, Molecular ecology.

[23]  James B. Grace,et al.  Niche differentiation between two rhizomatous plant species: Typha latifolia and Typha angustifolia , 1982 .

[24]  Gordon C. Tucker Typha latifolia L. , 1997 .

[25]  D. A. Larson,et al.  Nature of Cohesion within Pollen Tetrads of Typha latifolia , 1963, Science.