DMRG Approach to Fast Linear Algebra in the TT-Format

Abstract In this paper, the concept of the DMRG minimization scheme is extended to several important operations in the TT-format, like the matrix-by-vector product and the conversion from the canonical format to the TT-format. Fast algorithms are implemented and a stabilization scheme based on randomization is proposed. The comparison with the direct method is performed on a sequence of matrices and vectors coming as approximate solutions of linear systems in the TT-format. A generated example is provided to show that randomization is really needed in some cases. The matrices and vectors used are available from the author or at http://spring.inm.ras.ru/osel

[1]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[2]  Ivan V. Oseledets,et al.  Approximation of 2d˟2d Matrices Using Tensor Decomposition , 2010, SIAM J. Matrix Anal. Appl..

[3]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[4]  Ivan V. Oseledets,et al.  Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..

[5]  Boris N. Khoromskij,et al.  Multigrid Accelerated Tensor Approximation of Function Related Multidimensional Arrays , 2009, SIAM J. Sci. Comput..

[6]  Boris N. Khoromskij,et al.  Quantics-TT Collocation Approximation of Parameter-Dependent and Stochastic Elliptic PDEs , 2010, Comput. Methods Appl. Math..

[7]  Venera Khoromskaia,et al.  Numerical solution of the Hartree-Fock equation by multilevel tensor-structured methods , 2011 .

[8]  Ian H. Sloan,et al.  Why Are High-Dimensional Finance Problems Often of Low Effective Dimension? , 2005, SIAM J. Sci. Comput..

[9]  Vladimir A. Kazeev,et al.  Multilevel Toeplitz Matrices Generated by Tensor-Structured Vectors and Convolution with Logarithmic Complexity , 2013, SIAM J. Sci. Comput..

[10]  Ivan V. Oseledets,et al.  Wedderburn Rank Reduction and Krylov Subspace Method for Tensor Approximation. Part 1: Tucker Case , 2010, SIAM J. Sci. Comput..

[11]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[12]  Martin J. Mohlenkamp,et al.  Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Hans-Dieter Meyer,et al.  Multidimensional quantum dynamics : MCTDH theory and applications , 2009 .

[14]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[15]  Ivan Oseledets,et al.  QTT approximation of elliptic solution operators in higher dimensions , 2011 .

[16]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[17]  C. Lubich From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .

[18]  Dmitry V. Savostyanov,et al.  Fast Revealing of Mode Ranks of Tensor in Canonical Form , 2009 .

[19]  Eugene E. Tyrtyshnikov,et al.  Fast truncation of mode ranks for bilinear tensor operations , 2012, Numer. Linear Algebra Appl..

[20]  Venera Khoromskaia Computation of the Hartree-Fock Exchange by the Tensor-Structured Methods , 2010, Comput. Methods Appl. Math..

[21]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[22]  Eugene E. Tyrtyshnikov,et al.  Approximate multiplication of tensor matrices based on the individual filtering of factors , 2009 .

[23]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[24]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[25]  Eugene E. Tyrtyshnikov,et al.  Linear algebra for tensor problems , 2009, Computing.

[26]  Boris N. Khoromskij,et al.  Numerical Solution of the Hartree - Fock Equation in Multilevel Tensor-Structured Format , 2011, SIAM J. Sci. Comput..

[27]  Boris N. Khoromskij,et al.  Tensor decomposition in electronic structure calculations on 3D Cartesian grids , 2009, J. Comput. Phys..

[28]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..