Time-periodic steady-state solution of fluid-structure interaction and cardiac flow problems through multigrid-reduction-in-time

[1]  A. Marsden,et al.  A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations , 2011 .

[2]  Graham Horton,et al.  A Space-Time Multigrid Method for Parabolic Partial Differential Equations , 1995, SIAM J. Sci. Comput..

[3]  Alexander Ostermann,et al.  Multi-grid dynamic iteration for parabolic equations , 1987 .

[4]  Colin B. Macdonald,et al.  Parallel High-Order Integrators , 2010, SIAM J. Sci. Comput..

[5]  Reza Razavi,et al.  A partition of unity approach to fluid mechanics and fluid-structure interaction , 2019, Computer methods in applied mechanics and engineering.

[6]  Robert D. Falgout,et al.  Parallel time integration with multigrid , 2013, SIAM J. Sci. Comput..

[7]  Charbel Farhat,et al.  Time‐decomposed parallel time‐integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications , 2003 .

[8]  Pablo Lamata,et al.  Non-invasive estimation of relative pressure for intracardiac flows using virtual work-energy , 2020, Medical Image Anal..

[9]  Robert D. Falgout,et al.  A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel , 2012 .

[10]  G. Alagic,et al.  #p , 2019, Quantum Inf. Comput..

[11]  Rolf Krause,et al.  Convergence of Parareal for the Navier-Stokes equations depending on the Reynolds number , 2013, ENUMATH.

[12]  Martin J. Gander,et al.  50 Years of Time Parallel Time Integration , 2015 .

[13]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[14]  Johan Hoffman,et al.  Adaptive Modeling of Turbulent Flow with Residual Based Turbulent Kinetic Energy Dissipation , 2011 .

[15]  T. Richter A monolithic geometric multigrid solver for fluid‐structure interactions in ALE formulation , 2015 .

[16]  M. Gander,et al.  A Reynolds Number Dependent Convergence Estimate for the Parareal Algorithm , 2020 .

[17]  M. Lomsky,et al.  Normal limits for left ventricular ejection fraction and volumes determined by gated single photon emission computed tomography – a comparison between two quantification methods , 2008, Clinical physiology and functional imaging.

[18]  Charbel Farhat,et al.  Time‐parallel implicit integrators for the near‐real‐time prediction of linear structural dynamic responses , 2006 .

[19]  A. Hessenthaler Multilevel convergence analysis : parallel-in-time integration for fluid-structure interaction problems with applications in cardiac flow modeling , 2020 .

[20]  M. Gander Five Decades of Time Parallel Time Integration , and a Note on the Degradation of the Performance of the Parareal Algorithm as a Function of the Reynolds , 2017 .

[21]  J. P. Holt,et al.  Estimation of the Residual Volume of the Ventricle of the Dog's Heart by Two Indicator Dilution Technics , 1956, Circulation research.

[22]  Robert D. Falgout,et al.  Convergence of the multigrid reduction in time algorithm for the linear elasticity equations , 2018, Numer. Linear Algebra Appl..

[23]  Hans De Sterck,et al.  Convergence analysis for parallel‐in‐time solution of hyperbolic systems , 2019, Numer. Linear Algebra Appl..

[24]  V. Shamanskii A modification of Newton's method , 1967 .

[25]  Stefan Vandewalle,et al.  Efficient Parallel Algorithms for Solving Initial-Boundary Value and Time-Periodic Parabolic Partial Differential Equations , 1992, SIAM J. Sci. Comput..

[26]  Robert D. Falgout,et al.  Parallel In Time for a Fully Space-Time Adaptive Mesh Refinement Algorithm , 2020 .

[27]  P. Ponikowski,et al.  [2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure]. , 2016, Kardiologia polska.

[28]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[29]  Scott P. MacLachlan,et al.  A generalized predictive analysis tool for multigrid methods , 2015, Numer. Linear Algebra Appl..

[30]  A. Katz,et al.  Parallel Time Integration with Multigrid Reduction for a Compressible Fluid Dynamics Application , 2014 .

[31]  P. Roache Marching Methods for Elliptic Problems: Part 1 , 1978 .

[32]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[33]  Martin J. Gander,et al.  Analysis of Two Parareal Algorithms for Time-Periodic Problems , 2013, SIAM J. Sci. Comput..

[34]  David Nordsletten,et al.  A non-conforming monolithic finite element method for problems of coupled mechanics , 2010, J. Comput. Phys..

[35]  Rolf Krause,et al.  A massively space-time parallel N-body solver , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.

[36]  C. Schneider,et al.  ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: application of natriuretic peptides. , 2008, European heart journal.

[37]  Stefan Vandewalle,et al.  Space-time Concurrent Multigrid Waveform Relaxation , 1994 .

[38]  Jacob B. Schroder,et al.  A space-time parallel algorithm with adaptive mesh refinement for computational fluid dynamics , 2020 .

[39]  R. de Borst,et al.  Space/time multigrid for a fluid--structure-interaction problem , 2006 .

[40]  N. Anders Petersson,et al.  Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT) , 2017, SIAM J. Sci. Comput..

[41]  David Nordsletten,et al.  A Class of Analytic Solutions for Verification and Convergence Analysis of Linear and Nonlinear Fluid-Structure Interaction Algorithms , 2019, Computer methods in applied mechanics and engineering.

[42]  Hans De Sterck,et al.  On selecting coarse-grid operators for Parareal and MGRIT applied to linear advection , 2019 .

[43]  Jürg Nievergelt,et al.  Parallel methods for integrating ordinary differential equations , 1964, CACM.

[44]  Stephanie Friedhoff,et al.  On “Optimal” h-Independent Convergence of Parareal and MGRIT using Runge-Kutta Time Integration , 2019 .

[45]  J. Seward,et al.  Doppler echocardiography: theory, instrumentation, technique, and application. , 1985, Mayo Clinic proceedings.

[46]  B. Ong,et al.  Applications of time parallelization , 2020, Computing and Visualization in Science.

[47]  David Nordsletten,et al.  Validation of a non‐conforming monolithic fluid‐structure interaction method using phase‐contrast MRI , 2017, International journal for numerical methods in biomedical engineering.

[48]  Andreas Hessenthaler,et al.  Tight two-level convergence of Linear Parareal and MGRIT: Extensions and implications in practice , 2020, ArXiv.

[49]  M. Gander,et al.  Toward error estimates for general space-time discretizations of the advection equation , 2020 .

[50]  Patrick J. Roache,et al.  Elliptic Marching Methods and Domain Decomposition , 1995 .

[51]  François P. Hamon,et al.  Multi-level spectral deferred corrections scheme for the shallow water equations on the rotating sphere , 2019, J. Comput. Phys..

[52]  Martin J. Gander,et al.  A New Parareal Algorithm for Time-Periodic Problems with Discontinuous Inputs , 2018, 1810.12372.

[53]  Michael L. Minion,et al.  TOWARD AN EFFICIENT PARALLEL IN TIME METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS , 2012 .

[54]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[55]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[56]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[57]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[58]  Peter Arbenz,et al.  A Parallel Multigrid Solver for Time-Periodic Incompressible Navier-Stokes Equations in 3D , 2015, ENUMATH.

[59]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[60]  Robert D. Falgout,et al.  Multilevel Convergence Analysis of Multigrid-Reduction-in-Time , 2018, SIAM J. Sci. Comput..

[61]  Ben S. Southworth,et al.  Necessary Conditions and Tight Two-level Convergence Bounds for Parareal and Multigrid Reduction in Time , 2018, SIAM J. Matrix Anal. Appl..

[62]  Bo Song,et al.  Analysis of a new parareal algorithm based on waveform relaxation method for time-periodic problems , 2013, Numerical Algorithms.

[63]  T. Sochi,et al.  Multiphysics Computational Modeling in CHeart , 2016, SIAM J. Sci. Comput..