On Nonuniversal Symport/Antiport P Systems

We examine restricted SA P system models and analyze minimal systems with regard to the size of the alphabet and the number of membranes. We study the precise power of SA P systems with either 1, 2, or 3 symbols and less than 5, 4, and 3 membranes, respectively, improving the previous results. The question of whether using only a single symbol with any number of membranes is universal remains open.

[1]  Oscar H. Ibarra,et al.  On the Computational Complexity of P Automata , 2004, DNA.

[2]  Oscar H. Ibarra,et al.  Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.

[3]  Oscar H. Ibarra On determinism versus nondeterminism in P systems , 2005, Theor. Comput. Sci..

[4]  Burkhard Monien Two-Way Multihead Automata Over a One-Letter Alphabet , 1980, RAIRO Theor. Informatics Appl..

[5]  Artiom Alhazov,et al.  Symbol/Membrane Complexity of P Systems with Symport/Antiport Rules , 2005, Workshop on Membrane Computing.

[6]  Gheorghe Paun,et al.  Symport/Antiport P Systems with Three Objects Are Universal , 2004, Fundam. Informaticae.

[7]  Victor Mitrana,et al.  Multiset Automata , 2000, WMP.

[8]  Seymour Ginsburg,et al.  The mathematical theory of context free languages , 1966 .

[9]  Matthias Jantzen,et al.  Petri net algorithms in the theory of matrix grammars , 2005, Acta Informatica.

[10]  Oscar H. Ibarra The Number of Membranes Matters , 2003, Workshop on Membrane Computing.

[11]  Oscar H. Ibarra,et al.  On Model-Checking of P Systems , 2005, UC.

[12]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[13]  Sheila A. Greibach Remarks on Blind and Partially Blind One-Way Multicounter Machines , 1978, Theor. Comput. Sci..

[14]  Gheorghe Paun,et al.  Words, Semigroups, and Transductions , 2001 .

[15]  Walter J. Savitch A note on multihead automata and context-sensitive languages , 2004, Acta Informatica.

[16]  Andrei Paun,et al.  The power of communication: P systems with symport/antiport , 2002, New Generation Computing.

[17]  M. Minsky Recursive Unsolvability of Post's Problem of "Tag" and other Topics in Theory of Turing Machines , 1961 .

[18]  Oscar H. Ibarra,et al.  On Symport/Antiport P Systems and Semilinear Sets , 2005, Workshop on Membrane Computing.

[19]  Alfonso Rodríguez-Patón,et al.  Tissue P systems , 2003, Theor. Comput. Sci..