A visualization approach for discovering colocation patterns

ABSTRACT Colocation mining is one of the major spatial data mining tasks. When discovering colocation patterns, spatial statistics or data mining approaches are commonly used. Colocation mining results are typically presented in a textual form and do not provide any spatial information; thus, the results lack an intuitive approach to obtain cognition of colocation rules. Here, we propose a visualization approach to discover colocation patterns for two independent point distributions and generate visual results. This approach makes use of the ability of human color perception. For two geographic features, our approach first generates density surfaces of the input features and then visualizes the density surfaces using a red or green light with different intensities. Then, based on the law of additive color mixing, our approach mixes the colors of the two density surfaces to generate a colocation rule map. The visualization approach can also provide local details of colocation and be used for local colocation analysis. Users can detect colocation patterns and their distribution from the colocation rule maps. We use both synthetic data and real data to test the performance of our approach.

[1]  Xiaojuan Li,et al.  Local Indicator of Colocation Quotient with a Statistical Significance Test: Examining Spatial Association of Crime and Facilities , 2017, ArXiv.

[2]  H. Reichle,et al.  Kapnometrie im Luftrettungsdienst - Experimentelle Untersuchungen zur Genauigkeit von drei CO2-Analysatoren in der Unterdruckkammer , 1994 .

[3]  Min Sun,et al.  A Classification Method for Choropleth Maps Incorporating Data Reliability Information* , 2015 .

[4]  R. Lloyd,et al.  VISUAL AND STATISTICAL COMPARISON OF CHOROPLETH MAPS , 1977 .

[5]  T. Kinsman,et al.  Color is not a metric space implications for pattern recognition, machine learning, and computer vision , 2012, 2012 Western New York Image Processing Workshop.

[6]  Raúl Sierra-Alcocer,et al.  Exploratory analysis of the interrelations between co-located boolean spatial features using network graphs , 2012, Int. J. Geogr. Inf. Sci..

[7]  B. Ripley The Second-Order Analysis of Stationary Point Processes , 1976 .

[8]  宋金平,et al.  美国地理学百年发展脉络分析―基于《Annals of the Association of American Geographers》学术论文的统计分析 , 2007 .

[9]  Gennady L. Andrienko,et al.  Knowledge-Based Visualization to Support Spatial Data Mining , 1999, IDA.

[10]  Carlos Eduardo Scheidegger,et al.  Hashedcubes: Simple, Low Memory, Real-Time Visual Exploration of Big Data , 2017, IEEE Transactions on Visualization and Computer Graphics.

[11]  Luca Vogt Statistics For Spatial Data , 2016 .

[12]  Shashi Shekhar,et al.  A Joinless Approach for Mining Spatial Colocation Patterns , 2006, IEEE Transactions on Knowledge and Data Engineering.

[13]  Jian-guo Wu Hierarchy and scaling: Extrapolating informa-tion along a scaling ladder , 1999 .

[14]  J. Tasic,et al.  Colour spaces: perceptual, historical and applicational background , 2003, The IEEE Region 8 EUROCON 2003. Computer as a Tool..

[15]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[16]  Jiechen Wang,et al.  Network-constrained and category-based point pattern analysis for Suguo retail stores in Nanjing, China , 2016, Int. J. Geogr. Inf. Sci..

[17]  Yue-Hong Chou,et al.  Exploring spatial analysis in geographic information systems , 1997 .

[18]  Tinghua Ai,et al.  Spatial co-location pattern mining of facility points-of-interest improved by network neighborhood and distance decay effects , 2017, Int. J. Geogr. Inf. Sci..

[19]  George F. Jenks,et al.  ERROR ON CHOROPLETHIC MAPS: DEFINITION, MEASUREMENT, REDUCTION , 1971 .

[20]  Haim Levkowitz,et al.  From Visual Data Exploration to Visual Data Mining: A Survey , 2003, IEEE Trans. Vis. Comput. Graph..

[21]  Terry A. Slocum Thematic Cartography and Visualization , 1998 .

[22]  Adrian Baddeley,et al.  spatstat: An R Package for Analyzing Spatial Point Patterns , 2005 .

[23]  Min Deng,et al.  Multi-level method for discovery of regional co-location patterns , 2017, Int. J. Geogr. Inf. Sci..

[24]  Shashi Shekhar,et al.  A neighborhood graph based approach to regional co-location pattern discovery: a summary of results , 2011, GIS.

[25]  Barry J. Kronenfeld,et al.  The Colocation Quotient: A New Measure of Spatial Association Between Categorical Subsets of Points. 协同区位商:点集分类子集间空间关联性的新度量标准 , 2011 .

[26]  Jianguo Wu,et al.  CONCEPTS OF SCALE AND SCALING , 2006 .

[27]  Min Sun,et al.  A heuristic multi-criteria classification approach incorporating data quality information for choropleth mapping , 2017, Cartography and geographic information science.

[28]  P. Diggle,et al.  Spatial point pattern analysis and its application in geographical epidemiology , 1996 .

[29]  Robert G. Cromley,et al.  Geographically Weighted Colocation Quotients: Specification and Application , 2014 .

[30]  Peter Bak,et al.  Visual Analytics for Spatial Clustering: Using a Heuristic Approach for Guided Exploration , 2013, IEEE Transactions on Visualization and Computer Graphics.

[31]  Shashi Shekhar,et al.  Zonal Co-location Pattern Discovery with Dynamic Parameters , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[32]  Valerie Isham,et al.  A Bivariate Spatial Point Pattern of Ants' Nests , 1983 .

[33]  Steven W. Running,et al.  Testing scale dependent assumptions in regional ecosystem simulations , 1994 .

[34]  Jürgen Symanzik,et al.  Statistical Analysis of Spatial Point Patterns , 2005, Technometrics.

[35]  Hao Huang,et al.  Mining regional co-location patterns with kNNG , 2013, Journal of Intelligent Information Systems.

[36]  Xiaoru Yuan,et al.  Interactive Visual Discovering of Movement Patterns from Sparsely Sampled Geo-tagged Social Media Data , 2016, IEEE Transactions on Visualization and Computer Graphics.

[37]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[38]  Jörg Sander,et al.  Mining Statistically Significant Co-location and Segregation Patterns , 2014, IEEE Transactions on Knowledge and Data Engineering.

[39]  Robert G. Cromley,et al.  A concentration-based approach to data classification for choropleth mapping , 2015, Int. J. Geogr. Inf. Sci..

[40]  Dino Pedreschi,et al.  Interactive visual clustering of large collections of trajectories , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[41]  M. Sarifuddin A New Perceptually Uniform Color Space with Associated Color Similarity Measure for Content-Based Image and Video Retrieval , 2005 .

[42]  Cynthia A. Brewer,et al.  Evaluation of Methods for Classifying Epidemiological Data on Choropleth Maps in Series , 2002 .

[43]  Barry J. Kronenfeld,et al.  Restricted random labeling: testing for between-group interaction after controlling for joint population and within-group spatial structure , 2015, J. Geogr. Syst..

[44]  Ai Tinghua,et al.  Mining Co-location Pattern of Network Spatial Phenomenon Based on the Law of Additive Color Mixing , 2017 .

[45]  R. O'Neill,et al.  Effects of changing spatial scale on the analysis of landscape pattern , 1989, Landscape Ecology.

[46]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[47]  Yan Huang,et al.  Discovering Spatial Co-location Patterns: A Summary of Results , 2001, SSTD.

[48]  Jeremy Mennis,et al.  Spatial data mining and geographic knowledge discovery - An introduction , 2009, Comput. Environ. Urban Syst..

[49]  Hui Xiong,et al.  Discovering colocation patterns from spatial data sets: a general approach , 2004, IEEE Transactions on Knowledge and Data Engineering.

[50]  Nazha Selmaoui-Folcher,et al.  Domain-driven co-location mining , 2014, GeoInformatica.

[51]  M. Hutchings,et al.  Standing crop and pattern in pure stands of Mercurialis perennis and Rubus fruticosus in mixed deciduous woodland , 1978 .

[52]  Toshiaki Satoh,et al.  A Class of Local and Global K Functions and Their Exact Statistical Methods , 2010 .

[53]  Ye Zhao,et al.  TrajGraph: A Graph-Based Visual Analytics Approach to Studying Urban Network Centralities Using Taxi Trajectory Data , 2016, IEEE Transactions on Visualization and Computer Graphics.

[54]  Daniel A. Griffith,et al.  Optimal Map Classification Incorporating Uncertainty Information , 2017 .

[55]  Sergio J. Rey,et al.  An evaluation of sampling and full enumeration strategies for Fisher Jenks classification in big data settings , 2017, Trans. GIS.