Performance degradation in proton-conducting ceramic fuel cell and electrolyzer stacks

[1]  R. Kee,et al.  Faradaic efficiency in protonic-ceramic electrolysis cells , 2021, Journal of Physics: Energy.

[2]  L. Bi,et al.  High-performing proton-conducting solid oxide fuel cells with triple-conducting cathode of Pr0.5Ba0.5(Co0.7Fe0.3)O3-δ tailored with W , 2021, International Journal of Hydrogen Energy.

[3]  R. Braun,et al.  High performance protonic ceramic fuel cell systems for distributed power generation , 2021, Energy Conversion and Management.

[4]  R. Boardman,et al.  Exploring the structural uniformity and integrity of protonic ceramic thin film electrolyte using wet powder spraying , 2021, Journal of Power Sources Advances.

[5]  Z. Tao,et al.  A mini-review of carbon-resistant anode materials for solid oxide fuel cells , 2021, Sustainable Energy & Fuels.

[6]  N. Sullivan,et al.  Proton-conducting ceramic fuel cells: Scale up and stack integration , 2021 .

[7]  N. Menzler,et al.  Post-test characterization of a solid oxide fuel cell after more than 10 years of stack testing , 2020 .

[8]  B. Boukamp,et al.  Electrostatic spray deposited Ca3Co4O9+δ and Ca3Co4O9+δ/Ce0.9Gd0.1O1.95 cathodes for SOFC , 2020 .

[9]  Ryan O'Hayre,et al.  Towards robust autonomous impedance spectroscopy analysis: A calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion , 2020 .

[10]  Srikanth Gopalan,et al.  Comparison of chromium poisoning between lanthanum strontium manganite and lanthanum strontium ferrite composite cathodes in solid oxide fuel cells , 2020 .

[11]  J. Hartvigsen,et al.  Comparative review of hydrogen production technologies for nuclear hybrid energy systems , 2020 .

[12]  P. Hendriksen,et al.  Comparison of microstructural evolution of fuel electrodes in solid oxide fuel cells and electrolysis cells , 2020, Journal of Power Sources.

[13]  A. Vourros,et al.  An Electrochemical Haber-Bosch Process , 2020 .

[14]  R. Scipioni,et al.  Mechanisms of PrOx performance enhancement of oxygen electrodes for low and intermediate temperature solid oxide fuel cells , 2019 .

[15]  J. Tong,et al.  Review: recent progress in low-temperature proton-conducting ceramics , 2019, Journal of Materials Science.

[16]  J. M. Serra,et al.  Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers , 2019, Nature Materials.

[17]  N. Sullivan,et al.  Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production , 2019, Nature Energy.

[18]  Prabhakar Singh,et al.  Solid Oxide Electrochemical Systems: Material Degradation Processes and Novel Mitigation Approaches , 2018, Materials.

[19]  P. Cloetens,et al.  Impact of Nickel agglomeration on Solid Oxide Cell operated in fuel cell and electrolysis modes , 2018, Journal of Power Sources.

[20]  R. O’Hayre,et al.  Defect Chemistry and Transport within Dense BaCe0.7Zr0.1Y0.1Yb0.1O3 − δ(BCZYYb) Proton-Conducting Membranes , 2018 .

[21]  Jong‐Won Lee,et al.  A simplified approach to predict performance degradation of a solid oxide fuel cell anode , 2018, Journal of Power Sources.

[22]  N. Sullivan,et al.  Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells , 2018, Nature.

[23]  R. Braun,et al.  Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology , 2017 .

[24]  B. Boukamp Derivation of a Distribution Function of Relaxation Times for the (fractal) Finite Length Warburg. , 2017 .

[25]  P. Hendriksen,et al.  Relation Between Ni Particle Shape Change and Ni Migration in Ni–YSZ Electrodes – a Hypothesis , 2017 .

[26]  K. Gerdes,et al.  Engineering the solid oxide fuel cell electrocatalyst infiltration technique for industrial use , 2016 .

[27]  J. M. Serra,et al.  Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor , 2016, Science.

[28]  P. Su,et al.  Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer , 2016, Scientific Reports.

[29]  Ting Hei Wan,et al.  Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRTtools , 2015 .

[30]  R. Kee,et al.  Interpreting equilibrium-conductivity and conductivity-relaxation measurements to establish thermodynamic and transport properties for multiple charged defect conducting ceramics. , 2015, Faraday discussions.

[31]  T. Norby,et al.  Electrochemical promotion of the hydrogenation of CO2 on Ru deposited on a BZY proton conductor , 2015 .

[32]  Ali Almansoori,et al.  Readily processed protonic ceramic fuel cells with high performance at low temperatures , 2015, Science.

[33]  F. Tietz,et al.  Microstructural comparison of solid oxide electrolyser cells operated for 6100 h and 9000 h , 2015 .

[34]  Boxun Hu,et al.  Stability of strontium-doped lanthanum manganite cathode in humidified air , 2014 .

[35]  N. Bonanos,et al.  Conductivity, transport number measurements and hydration thermodynamics of BaCe0.2Zr0.7Y(0.1 − ξ)NiξO(3 − δ) , 2011 .

[36]  Craig A. J. Fisher,et al.  Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. , 2010, Chemical Society reviews.

[37]  A. Hagen,et al.  Effect of cathode gas humidification on performance and durability of Solid Oxide Fuel Cells , 2010 .

[38]  S. Jensen,et al.  Solid Oxide Electrolysis Cells: Microstructure and Degradation of the Ni/Yttria-Stabilized Zirconia Electrode , 2008 .

[39]  Mogens Bjerg Mogensen,et al.  A Method to Separate Process Contributions in Impedance Spectra by Variation of Test Conditions , 2007 .

[40]  K. Ota,et al.  Effect of CeO2 interlayer on ZrO2 electrolyte/La(Sr)CoO3 cathode for low-temperature SOFCs , 2004 .

[41]  Ching-ju Wen,et al.  Carbon deposition behaviour on Ni–ScSZ anodes for internal reforming solid oxide fuel cells , 2004 .

[42]  Karl Foger,et al.  Effect of glass sealant materials on microstructure and performance of Sr-doped LaMnO3 cathodes , 2001 .