Overview of Approximate Bayesian Computation

This Chapter, "Overview of Approximate Bayesian Computation", is to appear as the first chapter in the forthcoming Handbook of Approximate Bayesian Computation (2018). It details the main ideas and concepts behind ABC methods with many examples and illustrations.

[1]  Christopher C. Drovandi,et al.  Approximation of Bayesian predictive p-values withregression ABC , 2018 .

[2]  Carsten Wiuf,et al.  Using Likelihood-Free Inference to Compare Evolutionary Dynamics of the Protein Networks of H. pylori and P. falciparum , 2007, PLoS Comput. Biol..

[3]  Francois Septier,et al.  SMC-ABC methods for the estimation of stochastic simulation models of the limit order book , 2015 .

[4]  D. J. Nott,et al.  Approximate Bayesian computation via regression density estimation , 2012, 1212.1479.

[5]  Stuart Coles,et al.  The Largest Inclusions in a Piece of Steel , 2002 .

[6]  S. Coles,et al.  Inference for Stereological Extremes , 2007 .

[7]  R. Plevin,et al.  Approximate Bayesian Computation in Evolution and Ecology , 2011 .

[8]  Jean-Marie Cornuet,et al.  Adaptive Multiple Importance Sampling , 2009, 0907.1254.

[9]  M. Gutmann,et al.  Approximate Bayesian Computation , 2012 .

[10]  Brenda N. Vo,et al.  Quantifying uncertainty in parameter estimates for stochastic models of collective cell spreading using approximate Bayesian computation. , 2015, Mathematical biosciences.

[11]  Caroline Colijn,et al.  Informed Choices: How to Calibrate ABC with Hypothesis Testing , 2018 .

[12]  M. De Iorio,et al.  Importance sampling on coalescent histories. I , 2004, Advances in Applied Probability.

[13]  R. Wilkinson Approximate Bayesian computation (ABC) gives exact results under the assumption of model error , 2008, Statistical applications in genetics and molecular biology.

[14]  Scott A. Sisson,et al.  A Model-Based Bayesian Estimation of the Rate of Evolution of VNTR Loci in Mycobacterium tuberculosis , 2012, PLoS Comput. Biol..

[15]  S. Wood Statistical inference for noisy nonlinear ecological dynamic systems , 2010, Nature.

[16]  Nicolas Chopin,et al.  Divide and conquer in ABC: Expectation-Progagation algorithms for likelihood-free inference , 2015, 1512.00205.

[17]  Brandon M. Turner,et al.  Journal of Mathematical Psychology a Tutorial on Approximate Bayesian Computation , 2022 .

[18]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[19]  P. Donnelly,et al.  Inference in molecular population genetics , 2000 .

[20]  Daniel Wegmann,et al.  A Guide to General-Purpose ABC Software , 2018, Handbook of Approximate Bayesian Computation.

[21]  Laura Rifo,et al.  Long-range dependence and approximate Bayesian computation , 2017, Commun. Stat. Simul. Comput..

[22]  M. Blum Approximate Bayesian Computation: A Nonparametric Perspective , 2009, 0904.0635.

[23]  D. J. Nott,et al.  High-Dimensional ABC , 2018, Handbook of Approximate Bayesian Computation.

[24]  Jukka Corander,et al.  In defence of model‐based inference in phylogeography , 2010, Molecular ecology.

[25]  S. Tavaré,et al.  Modern computational approaches for analysing molecular genetic variation data , 2006, Nature Reviews Genetics.

[26]  S. Sampling theory for neutral alleles in a varying environment , 2003 .

[27]  P. Donnelly,et al.  Inferring coalescence times from DNA sequence data. , 1997, Genetics.

[28]  Helen MacGillivray,et al.  Weighted quantile-based estimation for a class of transformation distributions , 2002 .

[29]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[30]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[31]  David C. Hoaglin,et al.  Summarizing Shape Numerically: The g‐and‐h Distributions , 2011 .

[32]  David T. Frazier,et al.  Bayesian Synthetic Likelihood , 2017, 2305.05120.

[33]  Viet Chi Tran,et al.  HIV with contact tracing: a case study in approximate Bayesian computation. , 2008, Biostatistics.

[34]  Anil Prakash,et al.  Historical environmental change in Africa drives divergence and admixture of Aedes aegypti mosquitoes: a precursor to successful worldwide colonization? , 2016, Molecular ecology.

[35]  Richard D Wilkinson,et al.  Estimating primate divergence times by using conditioned birth-and-death processes. , 2009, Theoretical population biology.

[36]  Scott A. Sisson,et al.  Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model , 2015, 1504.04093.

[37]  S. Sisson,et al.  A comparative review of dimension reduction methods in approximate Bayesian computation , 2012, 1202.3819.

[38]  W. Michael Conklin,et al.  Monte Carlo Methods in Bayesian Computation , 2001, Technometrics.

[39]  Jean-Michel Marin,et al.  Likelihood-Free Model Choice , 2015, Handbook of Approximate Bayesian Computation.

[40]  G. Bertorelle,et al.  ABC as a flexible framework to estimate demography over space and time: some cons, many pros , 2010, Molecular ecology.

[41]  Scott A. Sisson,et al.  Inferences on the Acquisition of Multi-Drug Resistance in Mycobacterium Tuberculosis Using Molecular Epidemiological Data , 2017, Handbook of Approximate Bayesian Computation.

[42]  L. Excoffier,et al.  Statistical evaluation of alternative models of human evolution , 2007, Proceedings of the National Academy of Sciences.

[43]  Gareth W. Peters,et al.  On sequential Monte Carlo, partial rejection control and approximate Bayesian computation , 2008, Statistics and Computing.

[44]  Olivier François,et al.  Non-linear regression models for Approximate Bayesian Computation , 2008, Stat. Comput..

[45]  Dennis Prangle,et al.  Adapting the ABC distance function , 2015, 1507.00874.

[46]  Yong Huang,et al.  Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models , 2017 .

[47]  Richard R. Hudson,et al.  Generating samples under a Wright-Fisher neutral model of genetic variation , 2002, Bioinform..

[48]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[49]  Anthony N. Pettitt,et al.  Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation , 2015, PLoS Comput. Biol..

[50]  M. Beaumont Estimation of population growth or decline in genetically monitored populations. , 2003, Genetics.

[51]  Paul Fearnhead,et al.  Asymptotics of ABC , 2017, Handbook of Approximate Bayesian Computation.

[52]  Paul D. W. Kirk,et al.  Inferring extrinsic noise from single-cell gene expression data using approximate Bayesian computation , 2015, bioRxiv.

[53]  R. Fisher,et al.  Introduction to Statistical Modelling of Extreme Values , 2019 .

[54]  Martinez Jorge,et al.  Some properties of the tukey g and h family of distributions , 1984 .

[55]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[56]  Gareth W. Peters,et al.  Likelihood-free Bayesian inference for α-stable models , 2012, Comput. Stat. Data Anal..

[57]  Carsten Wiuf,et al.  Gene Genealogies, Variation and Evolution - A Primer in Coalescent Theory , 2004 .

[58]  Paul Fearnhead,et al.  Constructing summary statistics for approximate Bayesian computation: semi‐automatic approximate Bayesian computation , 2012 .

[59]  Laura S Kubatko,et al.  Estimating species trees using approximate Bayesian computation. , 2011, Molecular phylogenetics and evolution.

[60]  Michael P. H. Stumpf,et al.  ABC in systems biology , 2018 .

[61]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[62]  S. A. Sisson,et al.  ABC Samplers , 2018, Handbook of Approximate Bayesian Computation.

[63]  Joseph Fourier,et al.  Approximate Bayesian Computation: a non-parametric perspective , 2013 .

[64]  A. Sitek,et al.  ABC in Nuclear Imaging , 2016, Handbook of Approximate Bayesian Computation.

[65]  Dennis Prangle,et al.  Summary Statistics in Approximate Bayesian Computation , 2015, 1512.05633.

[66]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[67]  Matteo Fasiolo,et al.  ABC in Ecological Modelling , 2018 .

[68]  Paul-Henry Cournède,et al.  Bayesian parameter estimation for the Wnt pathway: an infinite mixture models approach , 2016, Bioinform..

[69]  Kerrie Mengersen,et al.  Approximating the likelihood in approximate Bayesian computation , 2018, 1803.06645.

[70]  Mike West,et al.  Bayesian Learning from Marginal Data in Bionetwork Models , 2011, Statistical applications in genetics and molecular biology.

[71]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[72]  Scott A. Sisson,et al.  Modelling extremes using approximate Bayesian Computation , 2014, 1411.1451.

[73]  Christian P. Robert,et al.  Approximate Bayesian Computation: A Survey on Recent Results , 2014, MCQMC.

[74]  Christopher C Drovandi,et al.  ABC and Indirect Inference , 2018, Handbook of Approximate Bayesian Computation.

[75]  Nicolas Ray,et al.  Bayesian Estimation of Recent Migration Rates After a Spatial Expansion , 2005, Genetics.

[76]  C. Robert,et al.  ABC likelihood-free methods for model choice in Gibbs random fields , 2008, 0807.2767.

[77]  James Hensman,et al.  ABC for Climate: Dealing with Expensive Simulators , 2015, Handbook of Approximate Bayesian Computation.

[78]  Simon Tavaré On the History of ABC , 2018 .

[79]  Shinichiro Shirota,et al.  Approximate Bayesian Computation and Model Assessment for Repulsive Spatial Point Processes , 2016, 1604.07027.

[80]  S. D. Wicksell,et al.  THE CORPUSCLE PROBLEM. A MATHEMATICAL STUDY OF A BIOMETRIC PROBLEM , 1925 .

[81]  Nicolas Chopin,et al.  Expectation Propagation for Likelihood-Free Inference , 2011, 1107.5959.

[82]  Jean-Marie Cornuet,et al.  Application of Approximate Bayesian Computation to infer the genetic history of Pygmy hunter-gatherers populations from Western Central Africa , 2018 .

[83]  Richard L. Smith,et al.  Approximate Bayesian computing for spatial extremes , 2011, Comput. Stat. Data Anal..

[84]  Jinhong Yuan,et al.  Bayesian Symbol Detection in Wireless Relay Networks via Likelihood-Free Inference , 2010, IEEE Transactions on Signal Processing.

[85]  J. Møller,et al.  An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants , 2006 .

[86]  D. L. Sean McElwain,et al.  Interpreting scratch assays using pair density dynamics and approximate Bayesian computation , 2014, Open Biology.

[87]  Christopher C. Drovandi Bayesian algorithms with applications , 2012 .

[88]  Anthony N. Pettitt,et al.  Likelihood-free Bayesian estimation of multivariate quantile distributions , 2011, Comput. Stat. Data Anal..

[89]  Christophe Andrieu,et al.  Model criticism based on likelihood-free inference, with an application to protein network evolution , 2009, Proceedings of the National Academy of Sciences.

[90]  David Allingham,et al.  Bayesian estimation of quantile distributions , 2009, Stat. Comput..

[91]  Christophe Andrieu,et al.  Theoretical and methodological aspects of MCMC computations with noisy likelihoods , 2018 .

[92]  Adrian Baddeley,et al.  Stereology for Statisticians , 2004 .

[93]  August E. Woerner,et al.  The ratio of human X chromosome to autosome diversity is positively correlated with genetic distance from genes , 2010, Nature Genetics.

[94]  Daniel Wegmann,et al.  FITTING MODELS OF CONTINUOUS TRAIT EVOLUTION TO INCOMPLETELY SAMPLED COMPARATIVE DATA USING APPROXIMATE BAYESIAN COMPUTATION , 2012, Evolution; international journal of organic evolution.

[95]  Gareth W. Peters,et al.  Bayesian Inference, Monte Carlo Sampling and Operational Risk. , 2006 .

[96]  Andrew R. Francis,et al.  The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis , 2009, Proceedings of the National Academy of Sciences.

[97]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[98]  Andrew R. Francis,et al.  Using Approximate Bayesian Computation to Estimate Tuberculosis Transmission Parameters From Genotype Data , 2006, Genetics.

[99]  D. J. Nott,et al.  Approximate Bayesian Computation and Bayes’ Linear Analysis: Toward High-Dimensional ABC , 2011, 1112.4755.

[100]  Franck Jabot,et al.  Inferring the parameters of the neutral theory of biodiversity using phylogenetic information and implications for tropical forests. , 2009, Ecology letters.

[101]  M. Gutmann,et al.  Fundamentals and Recent Developments in Approximate Bayesian Computation , 2016, Systematic biology.

[102]  P. Crescenzi,et al.  Cophylogeny Reconstruction via an Approximate Bayesian Computation , 2014, Systematic biology.

[103]  Yanan Fan,et al.  Handbook of Approximate Bayesian Computation , 2018 .

[104]  Michael G.B. Blum,et al.  Regression Approaches for ABC , 2018, Handbook of Approximate Bayesian Computation.

[105]  S. Sisson,et al.  Likelihood-free Markov chain Monte Carlo , 2010, 1001.2058.