Elementary Amenable Subgroups of R. Thompson's Group F

We study the subgroups of R. J. Thompson's group F and PLo(I), the group of orientation preserving, piecewise linear self homeomorphisms of [0, 1]. We exhibit, for each non-limit ordinal α ≤ ω2 + 1, an elementary amenable group of elementary class α (under Chou's stratification of elementary amenable groups) that is a subgroup of F and thus of PLo(I). We also give examples that negatively answer a question of Sapir about non-solvable groups in F and PLo(I).

[1]  Sean Cleary,et al.  Geometric quasi-isometric embeddings into Thompson's group F , 2002 .

[2]  S. I. Adyan,et al.  RANDOM WALKS ON FREE PERIODIC GROUPS , 1983 .

[3]  M. V. Sapir,et al.  Non-amenable finitely presented torsion-by-cyclic groups , 2001 .

[4]  R. Grigorchuk Degrees of Growth of Finitely Generated Groups, and the Theory of Invariant Means , 1985 .

[5]  P. Hall Wreath Powers and Characteristically Simple Groups , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  Quasi-Isometrically Embedded Subgroups of Thompson's GroupF , 1998, math/9802095.

[7]  Matthew G. Brin The Ubiquity of Thompson's Group F in Groups of Piecewise Linear Homeomorphisms of the Unit Interval , 1997, math/9705205.

[8]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[9]  Patrick Dehornoy The structure group for the associativity identity , 1996 .

[10]  R. J. Gardner,et al.  THE BANACH‐TARSKI PARADOX (Encyclopedia of Mathematics and Its Applications, 24) , 1986 .

[11]  A. Heller,et al.  Splitting homotopy idempotents II , 1993 .

[12]  P. M. Neumann On the structure of standard wreath products of groups , 1964 .

[13]  Lech W. Zacher,et al.  Selected Problems , 1979 .

[14]  S. Cleary,et al.  Metrics and embeddings of generalizations of Thompson’s group $F$ , 1998, math/9809185.

[15]  S. M. Gersten,et al.  Combinatorial group theory and topology , 1987 .

[16]  О подгруппах группы Р. Томпсона $F$ и других групп диаграмм@@@On subgroups of R. Thompson's group $F$ and other diagram groups , 1999 .

[17]  Stephen H. McCleary,et al.  WREATH PRODUCTS OF ORDERED PERMUTATION GROUPS , 1969 .

[18]  D. Robinson A Course in the Theory of Groups , 1982 .

[19]  Non-amenable finitely presented torsion-by-cyclic groups , 2003 .

[20]  W.Charles Holland The Characterization of Generalized Wreath Products , 1969 .

[21]  Craig C. Squier,et al.  Groups of piecewise linear homeomorphisms of the real line , 1985 .

[22]  Пример конечно определенной аменабельной группы, не принадлежащей классу $EG$@@@An example of a finitely presented amenable group not belonging to the class $EG$ , 1998 .

[23]  Ching Chou,et al.  Elementary amenable groups , 1980 .