Random search of stable member in a matrix polytope

Given a matrix polytope we consider the existence problem of a stable member in it. We suggest an algorithm in which part of uncertainty parameters is chosen randomly. Applications to affine families and 3 × 3 interval families are considered. A necessary and sufficient condition for the existence of a stable member is given for general interval families with nonnegative off-diagonal intervals.

[1]  Graziano Chesi,et al.  Exact robust stability analysis of uncertain systems with a scalar parameter via LMIs , 2013, Autom..

[2]  David W. Lewis,et al.  Matrix theory , 1991 .

[3]  Boris T. Polyak,et al.  Hard Problems in Linear Control Theory: Possible Approaches to Solution , 2005 .

[4]  C. Stéphanos Sur une extension du calcul des substitutions linéaires , 1900 .

[5]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[6]  T. Büyükköroglu,et al.  On the Robust Stability of Polynomial Matrix Families , 2016 .

[7]  Dirk P. Kroese,et al.  Handbook of Monte Carlo Methods , 2011 .

[8]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[9]  Olivier Bachelier,et al.  D-stability of polynomial matrices , 2001 .

[10]  F. R. Gantmakher The Theory of Matrices , 1984 .

[11]  L. Elsner,et al.  The bialternate matrix product revisited , 2011 .

[12]  A. Lewis,et al.  Two numerical methods for optimizing matrix stability , 2002 .

[13]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1995 .

[14]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[16]  Pavel Shcherbakov,et al.  Numerical search of stable or unstable element in matrix or polynomial families: A unified approach to robustness analysis and stabilization , 1998, Robustness in Identification and Control.

[17]  Ş. Yılmaz,et al.  On Two Problems for Matrix Polytopes , 2014 .

[18]  Boris T. Polyak,et al.  Stability regions in the parameter space: D-decomposition revisited , 2006, Autom..