Real Options Valuation: A Monte Carlo Approach

This paper provides a numerical approach based on a Monte Carlo simulation for valuing dynamic capital budgeting problems with many embedded real options dependent on numerous state variables. We propose a way of decomposing a complex capital budgeting problem with many options into a set of simple options, suitably accounting for interaction and interdependence among them. The decomposition approach is numerically implemented using an extension of the Least Squares Monte Carlo algorithm, presented by Longstaff and Schwartz (2001) applied to our multi-option setting. We also provide a number of applications of our approach to well-known real options models and real life capital budgeting problems. Moreover, we present a set of numerical experiments to provide evidence for the accuracy of the proposed methodology.

[1]  Gonzalo Cortazar,et al.  Simulation and Numerical Methods in Real Options Valuation , 2000 .

[2]  Peter Carr,et al.  The Valuation of Sequential Exchange Opportunities , 1988 .

[3]  Eduardo S. Schwartz The stochastic behavior of commodity prices: Implications for valuation and hedging , 1997 .

[4]  Jérôme Barraquand,et al.  Numerical Valuation of High Dimensional Multivariate American Securities , 1995, Journal of Financial and Quantitative Analysis.

[5]  Nalin Kulatilaka,et al.  Valuing the flexibility of flexible manufacturing systems , 1988 .

[6]  M. Zervos,et al.  A model for investment decisions with switching costs , 2001 .

[7]  L. Trigeorgis Real Options in Capital Investment: Models, Strategies, and Applications , 1995 .

[8]  Alistair Milne,et al.  'Time to Build, Option Value and Investment Decisions': A Comment , 2000 .

[9]  Eduardo S. Schwartz,et al.  Optimal Exploration Investments Under Price and Geological-Technical Uncertainty: A Real Options Model , 2000 .

[10]  Timothy J. Riddiough,et al.  Insights on the Effect of Land Use Choice: The Perpetual Option on the Best of Two Underlying Assets , 1996 .

[11]  L. Trigeorgis,et al.  The General Flexibility to Switch: Real Options Revisited , 2000 .

[12]  Eduardo S. Schwartz,et al.  The Valuation of Commodity Contingent Claims , 1994 .

[13]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[14]  William Margrabe The Value of an Option to Exchange One Asset for Another , 1978 .

[15]  James A. Tilley Valuing American Options in a Path Simulation Model , 2002 .

[16]  Eduardo S. Schwartz,et al.  Evaluating Natural Resource Investments , 1985 .

[17]  H. Johnson Options on the Maximum or the Minimum of Several Assets , 1987, Journal of Financial and Quantitative Analysis.

[18]  J. Carriére Valuation of the early-exercise price for options using simulations and nonparametric regression , 1996 .

[19]  Alexander J. Triantis,et al.  Valuing Flexibility as a Complex Option , 1990 .

[20]  L. Trigeorgis Real Options: Managerial Flexibility and Strategy in Resource Allocation , 1996 .

[21]  E. Prescott,et al.  Investment Under Uncertainty , 1971 .

[22]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[23]  A. Dixit Entry and Exit Decisions under Uncertainty , 1989, Journal of Political Economy.

[24]  L. Trigeorgis The Nature of Option Interactions and the Valuation of Investments with Multiple Real Options , 1993, Journal of Financial and Quantitative Analysis.

[25]  Gonzalo Cortazar,et al.  Monte Carlo evaluation model of an undeveloped oil field , 1998 .

[26]  René M. Stulz,et al.  Options on the minimum or the maximum of two risky assets : Analysis and applications , 1982 .

[27]  Eduardo S. Schwartz,et al.  Rational Pricing of Internet Companies , 2000 .

[28]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[29]  Alain Bensoussan,et al.  Impulse Control and Quasi-Variational Inequalities , 1984 .

[30]  Manuel Moreno,et al.  On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives , 2007 .

[31]  Nalin Kulatilaka,et al.  Real Options: Managing Strategic Investment in an Uncertain World , 1998 .

[32]  P. Boyle Options: A Monte Carlo approach , 1977 .

[33]  S. Ross,et al.  AN INTERTEMPORAL GENERAL EQUILIBRIUM MODEL OF ASSET PRICES , 1985 .

[34]  P. Boyle,et al.  Numerical Evaluation of Multivariate Contingent Claims , 1989 .

[35]  Eduardo S. Schwartz,et al.  Evaluating Environmental Investments: a Real Options Approach , 1998 .

[36]  R. McDonald,et al.  The Value of Waiting to Invest , 1982 .

[37]  Stewart C. Myers,et al.  Calculating abandonment value using option pricing theory , 1983 .

[38]  B. Øksendal,et al.  Optimal Switching in an Economic Activity Under Uncertainty , 1994 .

[39]  Eduardo S. Schwartz,et al.  Rational Pricing of Internet Companies Revisited , 2000 .

[40]  Eduardo S. Schwartz,et al.  The Valuation of American Put Options , 1977 .

[41]  Lenos Trigeorgis,et al.  A Log-Transformed Binomial Numerical Analysis Method for Valuing Complex Multi-Option Investments , 1991, Journal of Financial and Quantitative Analysis.

[42]  I. Karatzas On the pricing of American options , 1988 .

[43]  Volume Number The Value of Flexibility: The Case of a Dual-Fuel Industrial Steam Boiler , 1993 .

[44]  Martin B. Haugh,et al.  Pricing American Options: A Duality Approach , 2001, Oper. Res..

[45]  P. Glasserman,et al.  Pricing American-style securities using simulation , 1997 .

[46]  R. McDonald,et al.  Option Pricing When the Underlying Asset Earns a Below-Equilibrium Rate of Return: A Note , 1984 .

[47]  A. Bensoussan On the theory of option pricing , 1984, Acta Applicandae Mathematicae.

[48]  Onno Lint,et al.  The option value of developing two product standards simultaneously when the final standard is uncertain , 2002 .

[49]  R. Geske THE VALUATION OF COMPOUND OPTIONS , 1979 .